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Abstract

The problem of determining whether or not the value of an attribute is caused by other observed attributes, or
they merely happen to occur together, has been attacked from different angles. In this paper we propose a
solution to the problem of distinguishing between causal and acausal temporal rules, and the system that
generated the rules. The proposed method, called the Temporal Investigation Method for Enregistered
Record Sequences (TIMERS) is explained and introduced formally. TIMERS assumes that time can flow in
two directions, forward, which is the natural flow, and backward. This method has been implemented in the
TimeSleuth software. We assume that the input to TIMERS consists of a sequence of records, where each
record is observed at regular intervals. A set of rules is then generated from this input data. We perform three
tests. One to determine if the set of rules describes an instantaneous relationship, where the decision attribute
depends on condition attributes seen at the same time instant. The other two tests determine the degree to
which a set of rules is causal or acausal by changing the direction time when generating temporal rules. The
results of the three tests are then used to declare a verdict as to the nature of the system: Instantaneous,
causal, or acausal. Unlike approaches based on causal Bayesian networks, our approach does not emphasize
relations among individual attributes. Its verdict applies to a set of rules, and the system that has generated
the temporal input data.

1. Introduction

When a certain value of a decision attribute is often seen together with certain values of some condition
attributes, the question may arise as to whether there is a causal relationship between the decision and
condition attributes. This problem becomes harder when we consider a system in which the current decision
attribute may have been determined by previous values of the condition attributes and the previous values of
the decision attribute itself. Distinguishing among causal and acausal systems is important because a causal
system can be controlled if the input can be manipulated, and if we know the relationships between the input
values and the output value. An acausal system may not allow the output to be determined in this way. Even
though the previous values may always precede the decision attribute, The real cause is probably hidden.
Thus reproducing a desired output is not guaranteed. This insight is very useful to a domain expert who
wants to discover the characteristics of a system under investigation.

A popular method for assessing the causality of a relationship is to use statistical methods and determine how
two attributes influence each other [8]. A test for conditional independence is performed, which says that if
P(y, z| x) = P(y | x), then y is conditionally independent from z given x. If we are building a causal tree, this
independence would be represented by x being a parent of y, and z being either a parent of x, or residing in
another branch of the tree. This method thus works by first assuming that all attributes are dependent on all
other attributes. Tests for conditional independence prune some of these dependencies, and those that remain
are considered to show the causal relationships among the attributes.

We consider time to be of extreme importance in the discussion of causality. In physics this distinction may
not be made, as many relations seem to be instantaneous. For example, consider the formula PV = nRT,
where P is pressure, V' is volume, » and R are considered constants, and 7 is temperature. Setting the volume
as constant, increasing temperature will accompany an increase in pressure with no time delay. A higher



temperature increases the speed at which the molecules move, which is the same reason for the increasing
pressure value. In other words, temperature and pressure measure the same property of the system. For us,
the problem to solve is when there is an appreciable delay between an action and the results. For example,
setting the temperature gauge to a higher value will take time to have an effect on the temperature (and
pressure) of the system. Suppose our system consists of a closed container filled with some gas, heated by a
heater. The problem we are interested in is determining whether there is a relation between changing the
temperature of the heater on one hand, and the gas pressure on the other hand. At the start of the experiment,
at time 0, we determine the pressure of the system to have be P, the temperature of the system to be 75, and
the heater's temperature setting to be 500 C. We change the heater's temperature to 600C. After a while, at
time 1, we determine the pressure to be Pj, the temperature to be 77, and the heater's setting to be 600C as
expected. The question we want answered is whether there is a relation among the heater setting and the
temperature and pressure of the system. In the rest of the paper 7 will always denote time.

In previous work we have looked at other methods of discovering causality, such as TETRAD [10] and
CaMML [6]. One important property that differentiates the method we will present in this paper from these is
that the presented method deals with data originating from the same source over time, while others deal with
data generated from different sources with no special temporal ordering. We have shown that when dealing
with the appropriate kind of data, the presented method performs well [S]. Our previous work was concerned
with discovering temporal rules, with no consideration of causality and acausality. Here we introduce an
extension to our method to aid a domain expert in making that distinction.

In this paper we introduce the TIMERS method (Temporal Investigation Method for Enregistered Record
Sequences). As already mentioned, it is different from the other methods in a number of ways. First, this
method is based on an explicit temporal order among the observed values of the attributes. Suitable input
consists of an ordered set of records, where each record contains the values of the attributes, all observed at
the same time. An example of such a record is: <x = 1, y = 2, z = 3>, These records should have been
registered at regular intervals. The other difference is that this method is not concerned about the relation
among individual attributes, such as "x and y are causes of z." Instead, it judges a set of temporal rules that
involves the values of x and y to predict the value of z, as being either causal or acausal. An example rule that
could belong to this rule set is: if {(x = 1) and (y = 2)} then (z = 3). Here x and y are considered to be
condition attributes, while z is the decision attribute. By itself, we cannot tell if this rule represents a causal
relation or not, i.e., do x and y cause z to have a certain value, or they just happen to be seen together, and all
their values are caused by some hidden variable(s). The TimeSleuth software [2], written in Java and freely
available, implements the TIMERS method and tries to answer this question. This method is especially
appropriate when we have access to many attributes of a system, because the more attributes we have, the
better the chances of finding meaningful relationships among them. Otherwise there is a danger of finding
random relations that happen to exist in the sample of data used for the causality investigation. For example,
in weather data having only the air pressure, wind direction, and wind speed, trying to find a set of
causal/acausal rules to predict the value of any of these attributes using the other two may not lead to
satisfactory results because of the lack of relevant information. However, if we also had information such as
the air temperature, soil temperature, humidity, cloud coverage, etc. then the method might perform better.

The rest of the paper is outlined as follows. Section 2 defines the two directions for time, forward and
backward, and describes an operation called flattening, to bring the relevant attributes together with different
directions of time. Section 3 formally defines causality and acausality in the context of the TIMERS method.
The distinction among temporal and atemporal rules is also made clear. Section 4 explains how TIMERS
determines the nature of a set of rules. We explain our assumption that in a temporal environment, a forward
flow of time can be used to discover causality, and a backward direction can be used as a test for acausality.
Section 5 presents the results of experiments performed with the TimeSleuth software using real and
synthetic data sets. Section 6 concludes the paper.



2. Forward and Backward Directions of Time
A temporal rule is one that involves variables from times different than the decision attribute's time of
observation. An example temporal rule is:

If {(At time 7';: x =2) and (Attime 7.;: y>1,x=2)} then (Attime 7: x=5). (Rule 1).

This rule indicates that the current value of x (at time 7") depends on the value of x, 3 time steps ago, and also
on the value of x and y, 1 time step ago. We use a preprocessing technique called flattening [3] to change the
input data into a suitable form for extracting temporal rules with tools that are not based on an explicit
representation of time. With flattening, data from consecutive time steps are put into the same record, so if in
two consecutive time steps we have observed the values of x and y as: Time n: <x =1,y =2>, Time n + 1: <x
= 3, y = 2>, then we can flatten these two records to obtain <Time 7'- 1: x; =1, y; =2, Time 7> x; =3, y, =
2>, The "Time <number>" keywords are implied, and do not appear in the records. The initial temporal order
of the records is lost in the flattened records, and time always starts from (-w - 1) or (7' - w - 1) inside each
flattened record, and goes on until 0 or 7. 0 or 7 signifies the "current time" which is relative to the start of
each record. Such a record can be used to predict the value of either x, or y, using the other attributes. Since e
refrain from using any condition attribute from the current time, we modify the previous record by omitting
either x, or y;.

In the previous example we used forward flattening, because the data is flattened in the same direction as the
forward flow of time. We used the previous observations to predict the value of the decision attribute. The
other way to flatten the data is backward flattening, which goes against the natural flow of time. Given the
two previous example records, the result of a backward flattening would be < Time 7 y; =2, Time 7+ 1: x;
=3, y, = 2>, Inside the record time starts at 0 or 7, and ends at (w - 1) or (T + w - 1). This record could be
used to predict the value of y; based on the other attributes. x, is omitted because it appears at the same time
as the decision attribute y,. In the backward direction, future observations are used to predict the value of the
decision attribute.

Flattening, in either direction brings data from different time steps together. Rules found using such flattened
records are of temporal nature. The output set of rules distinguishes among the attributes from different times
by using time tags, as shown in the example rule above. If the system under investigation contains causal
relations, then bringing possible causes and effects from different time steps together allows TIMERS to find
causal rules in the flattened records. The number of records flattened together is determined by the window
size. In the above example, the window size is 2. Different window sizes can be tried to see which value
gives the best results.

Given a set of N temporally ordered observed records D = {recy, ..., recy}, the problem is to find a set of
rules, as described in more detail below. Each record rec, = <c,y,..., ¢,,>> gives the values of a set of variables
V= {vi,..., v} observed at time step t. . The forward window set Pw, t) = {di, cii | (W <) & t-w+1 <k < 1,
1 <i <mj} represents all observations in the window of size w, starting at time (¢ - w +1) and going until time
t, which is considered the current time. Time flows forward, in the sense that the decision attribute appears at
the end (time #). d, is the decision attribute at time ¢. The backward window set Py(w, t) ={ d,, cii | t < |D|-w
+ D) &t<k<(t+w-1),1<i<m} represents all observations in the window starting at time ¢ and going
until time ( + w - 1). Again, 7 is considered to be the current time. Time flows backward, in the sense that the
decision attribute appears at the beginning (time 7). At the time step containing the decision attribute,
condition attributes do not appear. In other words, d, is the only variable at current time .



Formally, the flattening operator F(w, D, direction, d) takes as input a window size w, the input records D, a
time direction direction, and the decision attribute d, and outputs flattened records according to the algorithm
in Figure 1.

F(w, D, direction, d)
Begin
for (t=1to |D|)
begin
if ((direction = forward) and (1 > w))
output (z =<zy, | dy € PAw, t) & k=w-1-t+p & z;; = d,>)
else if ((direction = backward) and (|D| - w +1 > 1))
output (z =<z, | dy € Py(w, 1) & k=p -t & z;; = d,>)
end
end

Figure 1.The flattening operation. The decision attribute d is used by the P() and P() sets.

The flattened record contains the neighboring w records in the appropriate direction of time. The F\, operator
renames the time index values so that in each record, time is measured relative to the start of that record only.
In each flattened record, the time index ranges from 0 to w-1. The flattened records are thus independent of
the time variable 7, making time relative to the start of each flattened record.

Each rule r, generated from these flattened records is a pair. The first member of a rule is a set of tests. The
other member of the rule is the value that is predicted for the decision variable at time 0 or w-1. r = (7ests,,
d.a), where Tests, = { Test = (a, x, Cond) }. Where a € V, and x is the time in which the variable « appears,
and where Cond represents the condition under which 7est succeeds. One example is: a, > 5. d,, is the value
predicted for d, (the decision attribute at time t).

For subsequent discussions, we define the operator CONDITION(r) as the set of variables that appear in the
condition side of a rule, i.e., CONDITION = {a, | (a, x, Cond) € Tests;}. Similarly, we define DECISION(r)

= {d{o, w-l}}-

An aggreguate variable is a synthetic variable that is computed by applying a function to the value of a
condition variable over a window size. An example is the average value of a condition variable. An
aggregate variable is assumed to have happened at all of the time steps in the window. An aggregate variable
is supposed to have happened before (in case of forward time flow) or after (in case of backward time flow)
the decision attribute, and its presence does not invalidate a temporal rule.

3. Temporal Causality and Temporal Acausality

There is no consensus on the definitions of terms like causality or acausality. For this reason we provide our
own definitions here. In previous research we detected sets of temporal rules and assigned the task of
whether such a relationship is causal to a domain expert [4]. Here we provide a way to make such distinction.
Even though TIMERS provides an algorithmic method for making a decision through a set of metrics, a
domain expert is still making the final decision. In each case, the informal definition is followed by a formal
one. We consider a set of rules to define a relationship among the condition attributes and the decision
attribute.



3.1 Instantaneous

An instantaneous set of rules is one in which the current value of the decision attribute relies solely on the
current values of the condition attributes in each rule [11]. An instantaneous set of rules is an atemporal one.
Another name for an instantaneous set of rules is a (atemporal) co-occurrence, where the values of the
decision attribute is associated with the values of the condition attributes.

Definition 1. For any given rule » in the rule set R, if the decision attribute d appears at time 7, then all
condition attributes should also appear at time 7:
R is instantaneous iff (V r € R, if dy = DECISION(r), then ¥ @, € CONDITION(r), t =T").

3.2 Temporal
A temporal set of rules is one that involves attributes from different time steps. A temporal set of rules can be
causal or acausal.

Definition 2. For any rule » in the rule set R, if the decision attribute appears at time 7, then all condition
attributes should appear at time ¢ = 7.
R is temporal iff (V 7 € R, if dy = DECISION(7), then ¥ @, € CONDITION(7), t # T').

We do not include the current time in the definition of a temporal set of rules because doing so can make it
possible for a co-occurrence relation to "pollute" the results of causality and acausality tests, which are
introduced later. As an example, consider the case of a co-occurrence relationship among three attributes: the
x and y positions as the condition attributes, and the presence of food at that location as the decision attribute.
If food always exists in the same location, then we can predict the presence of food even when we are
adjacent to the food location. If we move from position to position as time passes, then temporal information
is as good as atemporal information, because they provide the same information. To prevent this from
happening, we refrain from using observations that happen at the same time as the decision attribute.

We now define the two possible types of a temporal rule:

3.2.1 Causal
In a causal set of rules, the current value of the decision attribute relies only on the previous values of the
condition attributes in each rule [11].

Definition 3. For any rule 7 in the rule set R, if the decision attribute d appears at time 7, then all condition
attributes should appear at time ¢ < 7.
R is causal iff (V r € R, if dy = DECISION(r), then ¥ @, € CONDITION(r), t < T').

3.2.2 Acausal
In an acausal set of rules, the current value of the decision attribute relies only on the future values of the
condition attributes in each rule [7].

Definition 4. For any rule 7 in the rule set R, if the decision attribute d appears at time 7, then all condition
attributes should appear at time ¢ > 7.
R is acausal iff (V r € R, if dy= DECISION(r), then ¥V ¢, € CONDITION(r), ¢t >T").

All rules in a causal rule set have the same direction of time, and there are no attributes from the same time
as the decision attribute. This property is guaranteed simply by not using condition attributes from the same
time step as the decision attribute, and also by sorting the condition attributes in an increasing temporal
order, until we get to the decision attribute. The same property holds for acausal rule sets, where time flows



backward in all rules till we get to the decision attribute. Complementary, in an instantaneous rule set, no
condition attribute from other times can ever appear.

4. The TIMERS Method

The TIMERS method is based on finding classification rules to predict the value of a decision attribute using
a number of condition attributes that may have been observed at different times. We extract different sets of
rules to predict the value of a condition attribute based on different window sizes and different directions for
the flow of time. The quality of the set of rules determines how the window size and time direction have been
appropriate. We choose either the training accuracy or the predictive accuracy of the set of rules as the metric
for a good window size. The training accuracy measures the applicability of all the discovered rules on the
data that generated the rules, and is intuitive and easy to compute. The predictive accuracy tries the generated
rules on unseen cases, and measures the predictive power of the rules. While predictive accuracy can only be
generated if there are unseen cases, the training accuracy is always available.

Flattening data results in a test for causality because we ask C4.5 to find rules to predict the value of the
decision attribute using previously observed condition attributes. TimeSleuth can as easily test for the
acausality by flattening the data in the reverse temporal order. Thus the example record in the previous
section would be flattened to generate <x, = 3, y, = 2, x; = 2> which could be used to predict the value of
either x; using the other attributes. We would thus test to see if the current value of a decision attribute
depends on the values of other attributes in the future. In practice, is not necessary to write out the records in
the reverse order, as long as it is clear which variable is the decision attribute. In the forward flow of time, it
is either x, or y, while in the reverse flow of time it is either x; or y;.

To test to see if a set of rules is spontaneous, we simply refrain from flattening the input. In other words, we
use a window size of w = 1. We thus test to see if the current value of the decision attribute depends on the
current value of the condition attribute.

As mentioned before, in TIMERS we use either the training or the predictive accuracy as the measure for the
quality of the set of rules. C4.5 being a classifier, does its best to come up with accurate rules with no regard
to the way the input has been preprocessed. The user should thus perform 3 tests, generates different rule
sets, and compares the results with each other in order to judge the system as causal, acausal, or
instantaneous.

We provide the following guideline for making the distinction among the three types. The tests are done in
the order presented:

Generate data with the data and with different values of the window size. Set the accuracy of the rule set for
w =1 to g; (instantaneous), set a; to the best accuracy value derived from forward flow (causal) tests, and set
ay to the best value for backward flow (acausal) tests. Consider RuleGenerator() to be a function that takes as
input the flattened records and a target decision attribute, generates temporal rules, and returns a quality
measure for the rules, such as their training or testing accuracy.

a; = RuleGenerator(D, d)
ar=max(l < a <w < f, RuleGenerator(Flat(w, D, forward, d), d))
ap, = max(1 < @ <w < g, RuleGenerator(Flat(w, D, backward, d), d))

After obtaining the above values, we change the focus from sets of rules to the system that generated the
input data, and follow these guidelines to decide on the nature of the system under investigation.



1. If the results of an instantaneous test (the test with a window size of 1) is better than other tests, then the
system is spontaneous. If a system is spontaneous, we expect the results of temporal (causal and acausal)
tests to be about the same as the spontaneous test, as information available in flattened records will
contain co-occurrences among the attributes.

2. [If the results of a backward flow test is better than a spontaneity test, and better or equal to a causality
test, then we declare the rules to denote an acausal relation. We opt to declare the rule set acausal in case
of a tie because judging a system as causal needs insight into the way the system works, and it may not
be available to our method.

3. [If the results of a forward flow test are better than the other two tests, the rules are causal. Making the
decision to declare a system as causal as the last choice reflects our conservative approach.

If ((a; 2 ag) A (a; 2¢ ap)) then the system is instantaneous.
Else if (ay, >; a) then the system in acausal
Else the system is causal.

The & subscripts in the comparison operators capture the "about" phrase in the informal representation of the
method. a >, b is defined as: a > b + & Similarly, a >, b is defined as a > b + & The value of ¢is determined
by the domain expert.

We assume that once the domain expert finds a good training or predictive accuracy in either temporal
direction and with any window size, he will employ the corresponding rule set to make predictions about the
decision attribute. For example, if among 10 window values, the best result is obtained in one backward flow
test, while in the other 9 tests the results of a forward flow of time are about the same or only slightly better
than the results of a backward flow of time at the corresponding window size, we still mark the system as
acausal in that window size range. The assumption being that the one best rule set obtained with a backward
flow will be utilized.

Alternatively, we can talk about the nature of a system at a specific window size w. In this case, we follow
the previous steps, but we use

ar = RuleGenerator(Flat(w, D, forward, d), d)

a, = RuleGenerator(Flat(w, D, backward, d), d)

In such a case, we say the system is causal or acausal, at window size w.

To safeguard against cases where the amount of information is not sufficient, we consider it necessary for the
domain expert to have thresholds for how low the accuracy in the tests could be before the results are
discarded. For example, if the three tests all result in accuracy values less than 20%, then we could conclude
that the data is insufficient for making any judgment. The TIMERS Algorithm is presented in Figure 2.



TIMERS(D, «, B, Ay, & d)

Input: A sequence of temporally ordered data records D, a minimum and maximum flattening window size « and £,
a < f. A minimum accuracy threshold 4,, a tolerance value ¢, and a decision attribute d. The attribute d can be set to
any of the observable attributes in the system, or the algorithm can be tried on all available attributes in turn.

Output: A verdict as to whether the system behaves in a instantaneous, causal or acausal manner when predicting the
value of a specified decision attribute.

RuleGenerator() is a function the receives input records, generates decision rules, and returns the training or
predictive accuracy of the rules.

Flat(w, D, TimeFlow, d) is a function that flattens the records in dataset D in the forward (causal) or backward
(acausal) direction, depending on the value of TimeFlow, the window size w, the decision attribute d, and returns the
flattened records.

Begin:
a; = RuleGenerator(D, d);
for (w = a to p)
asy = RuleGenerator(Flat(w, D, forward, d), d)
apw = RuleGenerator(Flat(w, D, backward, d), d)
end for

ar = max(asg,.. agp)
ay, = max(ayg, . .. Ayp)

if (& <Ap) A (as<Ay) A (ay < A4y)) then discard results and stop. Not enough information to make a verdict.
if (&> ap) A (a;>¢ ap)) then verdict = "the system is instantaneous"

else if (ar 2 ap) then verdict = "the system is acausal”

else verdict = "the system is causal"”

if w; = w, and verdict # "the system is instantaneous"” then verdict = verdict + "at window size" + w;

verdict = "for attribute d, " + verdict

Return the verdict.
End.

Figure 2. The TIMERS algorithm, performed for the decision attribute d.

5. Experimental results.

In this section we try the proposed method, as implemented in TimeSleuth. It is an application software
written in Java, and usable anywhere a Java runtime system and a graphical user interface is available.
C4.5T, a modified form of the standard C4.5 [9] that is able to derive temporal rules, is used as the rule
generator. C4.5T's output includes temporal information. An example temporal rule output by C4.5T is Rule
1 is Section 3.

We use three different data sets, each with its own characteristics. The first is synthetic artificial life data,
generated from a simulated world. The second data set comes from a weather database, with relevant fields,
making it possible for the rule generator to find reliable rules. The third one is weather data with few relevant
condition attributes, where it is hard to find useful rules.



Series 1: The first series of experiments used data set from an artificial life program called URAL [13]. In a
two-dimensional world, a robot moves around randomly, and records its current location plus the action that
will take it to the next (x, y) position. It also records the presence of food at each location. The program
chooses fix locations for the food, and keeps them there all through the run of the program. The robot can
move to left and right along the x axis, and also up and down, along the y axis, with no problems, except for
the edges of the world, where a move will leave it in the same position. The next position is thus reliably
predictable if we know the current position and the direction that the robot will take at the position. This is a
temporal relationship, as the robot makes one move in every clock tick, making the current position
dependent of the previous position and movement direction. Food exists on fixed location, and at each
location, the presence of food does not depend on any previous moves or positions taken by the robot.

We first set the position along the x axis as the decision attribute. In our world, the current x value depend of
the previous x value and the previous movement direction. The results appear in Table 1.

Window Size | Causality Test Acausality Test
1 46.0%

2 100% 70.6%
3 100% 71.7%
4 100% 72.8%
5 100% 74.5%
6 100% 73.7%
7 100% 73.3%
8 100% 73.6%
9 100% 72.6%
10 100% 73.9%

Table 1. URAL data. Decision attribute is x.

The system is not instantaneous, because a window size of 1 (current time) gives relatively poor results.
Rather, the system is causal, because the forward test gives better relative results. The same conclusions are
obtained for the y values.

In the following table we set food as the decision attribute. In this simple world, the presence of food is
associated with its position. Because the location of the food does not change, we can predict the presence of
food using only the positions that neighbour the food. We expect about the same results with any value of
window size.

Window Size | Causality Test | Acausality Test
1 99.5%

2 99.3% 99.1%
3 99.3% 99.3%
4 99.3% 99.4%
5 99.4% 99.5%
6 99.4% 99.6%
7 99.4% 99.5%
8 99.5% 99.5%
9 99.3% 99.6%
10 99.3% 99.6%

Table 2. URAL data. Decision attribute is presence of food

The system is instantaneous because a window size of 1 gives relatively good results.



Series 2: The second experiment was done on a real-world data set, comprising Louisiana weather
observations [12]. The observed attributes consist of air temperature, amount of rain, maximum wind speed,
average wind speed, wind direction, humidity, solar radiation, and soil temperature. These values were
recorded every hour. We used 343 consecutive observations to predict the value of the attribute soil

temperature.

Window Size | Causality Test | Acausality Test
1 27.7%

2 82.7% 75.1%
3 86.8% 87.1%
4 84.4% 84.7%
5 86.7% 82.9%
6 77.5% 81.4%
7 79.5% 79.8%
8 80.7% 79.8%
9 77.9% 77.3%
10 79.2% 74.0%

Table 3. Louisiana data. Decision attribute is Soil temperature.

The system is not instantaneous, because a window size of 1 gives poor results. The system is acausal, since
the acausality tests gives the same or better results that the causality test.

Series 3: The next test was done on the Helgoland weather data set [1], which consists of hourly
observations of the following attributes: year, month, day, hour, air pressure, wind direction, and wind speed.
The decision attribute was set to be the wind speed. 3000 hours of consecutive observations were used to

produce the results.

Window Size | Causality Test | Acausality Test
1 18.9%
2 17.7% 20.7%
3 14.7% 17.2%
4 14.2% 16.9%
5 13.9% 14.5%
6 14.0% 15.2%
7 13.4% 15.0%
8 13.2% 14.9%
9 12.2% 13.9%
10 12.0% 14.7%

Table 4. Helgoland data. Decision attribute is Wind speed.

There is not enough information to make a judgement. In spite of the thousands of records, each record is not
rich enough to provide TimeSleuth with a reliable way of creating rules to predict the value of the decision
attribute. This is unlike the previous weather data set, and is clearly reflected in the accuracy of the rule,

which is low.

6. Concluding Remarks

We introduced the TIMERS method to judge the nature of the relationship among a set of condition
attributes and a decision attribute. The three possibilities are: Instantaneous, causal, and acausal. The verdict
is determined by examining sets of rules that predicts the value of the decision attribute. TIMERS relies on
temporal characteristics of the rules, and uses the quality of the rules generated under different directions of

10



time as a criterion to determine if there is a causal or acausal relationship in the system that generated the
input data. TIMERS was presented formally, and intuitions about our choices were also provided as needed.
TimeSleuth was introduced as the software that implements the TIMERS method.

We applied TimeSleuth to three different data sets. The first data set came from an artificial world, where the
nature of the relationships were clear and there are no exceptions to the rules. In this ideal environment,
TimeSleuth performed very well. We then moved to the real-world problem of the Louisiana weather
observations, where the data set consisted of many related attributes. TimeSleuth could judge the nature of
the rules to predict the value of the soil temperature because there was enough relevant information in the
data and the rules. In the third set of data, TimeSleuth was tried on a "long but narrow" weather data, where
the attributes were not relevant enough to predict the value of the attribute "wind speed." This was reflected
in low accuracy values. This data set is probably more suitable for a time-series analysis.

TimeSleuth is written in Java and freely available by contacting the authors or from the address
http://www.cs.uregina.ca/~karimi/downloads.html. It includes sources, executables, example files, and online
help.
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