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Abstract

Distributed Inter-Process Communication (DIPC) is a software-only solution to enable people to
build and program Multi-Computers. Among other things, DIPC provides the programmers
with Transparent Distributed Shared Memory. DIPC is not concerned with the incompatible
executable code problem. It also does not change user’s data, but DIPC has to understand data
produced by its own peer processes in different machines.   This paper briefly describes the
efforts done to make it a heterogeneous system by enabling it to function under the Linux
operating system running on both Intel x86 and Motorola 680x0 processors. Here, different
parts of the same application could execute in machines with different architectures
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Introduction to DIPC

DIPC is simple a software-only solution to enable easy and transparent data exchange between the
processes of a distributed application [8,9]. Using it, people can build and program multi-computers
[1], built  of ordinary personal computers connected over a TCP/IP network [6].  The current
implementation enables Linux programmers to use UNIX System V IPC mechanisms [2], including
shared memories, messages and semaphores, in a distributed environment.

DIPC’s services  are accessible via the Linux kernel, letting application programmers use the already
familiar System V IPC system calls to send and receive data. So, as far as the application programmer



is concerned, there are no major changes in DIPC’s programming model  relative to normal System V
IPC programming. There is also no need for any modified compilers or link libraries.

Messages and semaphores are used synchronously, by invoking system calls whenever the program
needs them. DIPC uses Remote Procedure Calls (RPC) [3] for their implementation. The shared
memories, however, are accessed asynchronously, implying that they can be read or written any time
an application programmer wants to. There is no need to do any special synchronization activity before
or after the access. DIPC’s shared memory uses the single-writer / multiple-readers protocol [7], and
employs the strict consistency model [4], meaning that a read will return the most recently written
values. Read or write access rights are assigned to computers, and all the processes on that machine
can enjoy the rights.

DIPC can manage shared memories in two modes: In the segment mode,  whenever a process wants to
read or write a shared memory whose contents are not present in its computer, the whole contents of a
shared memory are transferred between computers, whether they actually need it or not.  In page mode,
4K byte pages are sent from machine to machine. Our preliminary benchmarks have shown that in
certain applications, the performance of DIPC’s shared memory in the segment transfer mode can be
somewhat better than the page mode. This could be attributed mainly to lower software management
overhead. However, because in DIPC there can be only one machine with write access to a shared
memory, the page mode allows more concurrent activity in programs that have many processes writing
to different pages.

DIPC has two parts: The main part, a program called dipcd, runs in the user space with superuser
privileges, and a smaller part, hidden inside the kernel, which allows the first part to access and
manipulate kernel data. This design is the result of the desire to keep the needed changes in the
operating system kernel to a minimum.  dipcd creates several processes to do its work. These processes
manage all the necessary decision makings and network operations. They use predetermined data
packets to communicate with dipcd processes on other computers. All the necessary information for a
requested action, including the parameters to a system call, as obtained from inside the kernel, are
included in these packets.

DIPC In a Heterogeneous Environment

DIPC was originally developed on Linux for Intel x86 processor family. Right from the early design
stages, it was decided that making the system work in a heterogeneous environment should be an
important consideration.

DIPC does not care about the incompatibility of different processors’ executable programs: The user
has to make sure that suitable programs are available in each computer before executing the
application. But DIPC and the programmer have to consider the differences in data representation
formats. For DIPC to work in a heterogeneous environment, dipcd processes should first understand
what is to be done on behalf of a remote peer , and after that, they should use the  parameters supplied
from the remote kernel in their local machines.

It should be noted that DIPC does not touch data in a distributed shared memory or in the exchanged
messages, as doing so would require having some information about the semantics of  the application’s
data usage, which are not obtainable easily. The programmer is responsible for making sure that the
data used by the application have the same meaning in all the different computers. Other parameters
needed for the operation of any  system call are converted automatically by DIPC. For the contents of
the  messages, there are some techniques to let the programmer do this: (s)he could assign the first byte
to hold an identification value. The receiving side could then decide if anything should be done before



the data could be used. The same could be attempted for shared memories: The first byte could be set
to something representing the architecture that has produced the data. Semaphores could be used to
regulate the writes and reads to a shared  memory, thus guarantying an orderly access.

The asynchronous nature of the distributed shared memory access in DIPC means that a process can be
stopped in the middle of its read or write, and later restarted again, while the shared memory contents
have changed. All this could happen without the process noticing anything. This in contrast to the
messages and the semaphores, which are used by the program explicitly calling the relevant system
calls. This bring up the problem of how to let the process know when there is possible need to convert
data in the shared memory .

DIPC tries to address this problem by using asynchronous process notification means: UNIX signals
[5]. Two pre-defined signals are sent to processes when they become the reader or writer of a shared
memory. Now they can do any necessary action. Unfortunately, the signal mechanism does not allow
for any parameters to be passed to the receiving process. This makes it  difficult for a process to find
out which page of a shared memory should be attended. So it seems necessary for DIPC to use the
segment transfer mode when it is used in a heterogeneous environment. The same problem makes it
difficult for the programs to use more than on distributed shared memory segment in a heterogeneous
environment.

It is clear that dipcd itself also needs to exert some conversions before data produced in one computer
can be interpreted and used in another machine. The initial design of DIPC made the receiving side
responsible for any conversions required. Each packet would include a pre-defined identifier,
specifying the machine architecture that generated the information, in a predetermined field. The
receiving side could check it, and knowing the sender architecture,  could do any necessary
conversions.

It was anticipated that  DIPC will be used mostly in homogeneous environments, so the above scheme
would, in many cases, make the conversions unnecessary, resulting in more efficiency. The main
drawback is that DIPC should know about the data representation formats of all the different
architectures on which it was running, making the port to other machines more difficult.

During the port of the system to Linux for Motorola 680x0 processors, another option was explored:
Using the TCP/IP network byte ordering convention for the data format reduces the required
conversion effort to using the same routines that are part of the TCP/IP networking code. Both sender
and receiver side use conversion to and from network byte order, respectively, thus achieving a more
general conversion strategy at the expense of  additional overhead. This option has been extensively
tested during the Linux/m68k port of DIPC.

Both conversion strategies can be used concurrently in the same cluster if all required receive
conversion functionality is present in every implementation; special care was taken to ensure that the
data conversion scheme may either be chosen at compile time or at startup time. Extension to some
strategy for adaptive choice of the conversion scheme is possible, but not implemented yet.

Data conversion is applied to all data fields of the DIPC message headers with the sole exception of the
network address of the sending and receiving machine, and to all data fields in the transmitted system
call arguments that are relevant on the remote machine. Keeping all data in a format directly
understood by the local machine in fact reduced porting DIPC to the 680x0 architecture to supplying
the data conversion primitives itself, changing the dipcd code to use the conversion when sending data
to the network by adding a wrapper to the network system calls proper, and adding a system call for
DIPC’s private use,  plus the DIPC shared memory page-fault handler to the architecture-specific parts
of the Linux kernel.



Patches to the common Linux IPC kernel code required no modifications, as Linux/m68k is fully
integrated into the common Linux kernel source tree with respect to IPC functionality. Ports of DIPC
to other architectures should therefore be achieved with minimal effort, making DIPC easily amenable
on all supported Linux platforms and raising the issue of integrating DIPC as a general Linux feature.

DIPC’s Development

The port of DIPC to Linux/M68k is nearly complete. The current port makes us confident that DIPC
could be ported to Linux for other 32-bit architectures with relative ease. The case of 64-bit systems,
however, remains to be tried. Also, implementing most of DIPC in the user space makes us believe that
porting it to other UNIX variants supporting System V IPC could be possible..

DIPC’s sources and documents can be obtained and used freely. The latest version of this software can
be obtained by anonymous FTP from sunsite.unc.edu, in directory /incoming/Linux, or
/pub/Linux/Systems/Networks/distrib/dipc.

Conclusions

Distributed Programming systems seem to be a powerful tool for today’s computing needs, and a
heterogeneous one is of much more value. In DIPC’s case, these advantages are supplemented by an
easy-to-use  programming model.

This work shows that it is possible to design and implement simple, and easy to use heterogeneous
distributed systems. There is a price paid, though: Our preliminary benchmarks  have not shown very
high remote operation speeds. We are attributing this to the fact that DIPC is mainly a user-space
system, with frequent needs to access the kernel data structures, which in a traditional UNIX system,
like Linux, means a lot of overhead. However, expecting the speed of computers and communication
equipment to rise much more quickly than the number of people trained for distributed programming,
we expect this to be of minor significance for DIPC.
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