
1

DIPC: A System Software Solution for
Distributed Programming

Kamran Karimi
Department of Computer Engineering

Iran University of Science & Technology
Narmak, Tehran

Iran

E-mail: karimik@sun.iust.ac.ir

Mohsen Sharifi
Software Engineering Laboratory

Department of Computer Engineering
Iran University of Science & Technology

Narmak, Tehran
Iran

E-mail: mshar@rose.ipm.ac.ir
Phone: (0098-21) 745-6783

Abstract

Distributed Inter-Process Communication (DIPC) provides the programmers of the
Linux operating system with distributed programming facilities, including Distributed
Shared Memory (DSM). It works by making UNIX System V IPC mechanisms (shared
memory, message queues and semaphores) network transparent, thus integrating neatly
with the rest of the system. The underlying network protocol used is TCP/IP. DIPC is
targeted to work on WANs (Wide Area Networks) and in heterogeneous environments.

Keywords

distributed programming, parallel programming, multi-computer, IPC, DSM, Linux, WAN,
TCP/IP, heterogeneous environment

Introduction

Considering the limitations in increasing the processing speed of uni-processor systems, using
multiple processing elements (PEs) to solve a problem is becoming the solution of choice
among computer users [1]. Here solving a problem requires the following abilities:

 • Starting programs on different PEs.
 • Providing them with the needed data and collecting the processed results.
 • Synchronizing them, so that they access the data and results in an orderly manner.

There are two main trends in designing parallel systems: Multi-Processors (MPs) and Multi-
Computers (MCs) [1,8]. MPs use processors with access to some shared memory to do their
work. This shared memory makes the programmer’s job in transferring data and synchronizing
between the processors easy [2,3]. Usually the operating system undertakes the task of
running parts of a parallel application on different processors. They usually need custom
designing and are hard to reconfigure. MCs on the other hand, are mostly built by connecting
some stand-alone computers over a network. These are also known as distributed systems.

2

There are differences between distributed and parallel software, though a distributed program
may also be a parallel one.

Considering the fact that each of the computers in an MC can in itself be an MP, it can be
concluded that the MC architecture is an improvement over, rather than a contender to the
MP architecture. MCs are easy to design and reconfigure, but the fact that different computers
don’t have direct access to each other’s memory, makes their programmer’s job much harder.
This includes both data transfer and synchronization. Much work has been done on remote
program execution, one example being the ‘rsh’ UNIX command. A system with the ease of
use of MPs and the ease of the design and reconfiguration of MCs would be highly desirable.

One interesting method to ease an MC programmer’s burden is to simulate a shared memory
accessible to different computers in the network. This is called Distributed Shared Memory
(DSM) [1] and is usually implemented through software means. Here the programmer has the
ease of use of an MP solution, while taking advantage of the benefits of an MC architecture.
The price paid for this, most of the time, is a drop in performance. Careful programming can
diminish this negative factor. In practice the advantages of MCs are so compelling to many
people that they seem to be the trend of the future.

Motivation

UNIX is among the platforms of choice for writing parallel and distributed programs. The
AT&T UNIX provides what is known as System V IPC mechanisms, consisting of shared
memories, message queues and semaphore sets, to enable programmers to exchange data and
synchronize between processes running on the same computer [4,5]. These could be used in an
MP system. Different processes use the same numerical “key” to gain access to the same IPC
structure. System V IPC is well documented, familiar to many programmers and widely
available in different UNIX systems. Many programs use it to communicate between different
processes. However, UNIX does not provide enough standard facilities for distributed
software development. Programmers and users of different UNIX flavors have to resort
different add-on packages and various programming models to write or use distributed
software. They may be forced to use some specific programming languages (e.g. Linda) and
methodologies (e.g. Object Orientation). The mechanisms provided by these packages usually
differ greatly from one another, each requiring the users to learn some new material, which
won’t be of any use to them when migrating to other methods. Many also require detailed
involvement of the programmer or the user in the process of transferring information over the
network. One example is the PVM (Parallel Virtual Machine) software [10]. The need for a
simpler distributed programming model under UNIX, usable by more programmers, is clearly
present.

Introducing DIPC

DIPC (Distributed Inter-Process Communication) is a software-only solution for creating a
multi-computer using ordinary and readily available PC computers and networking hardware.
Each node could be an i386 or higher machine. The software used is a modified version of the
Linux operating system, with TCP/IP [7,8] as the networking protocol. The main goal is to

3

enable programmers to write distributed software quite easily. It tries to ease data transfer and
synchronization operations between processes in different computers by making UNIX
System V IPC mechanisms network transparent.

DIPC is being developed in Iran University of Science & Technology’s Department of
Computer Engineering,

DIPC Goals

The following goals were in mind when designing and implementing DIPC:

 • Simplicity of the system.
 Preferring simplicity of the algorithms whenever a conflict between that and the

performance arises (This design decision may change in future versions).

 • Transparency of the distributed facilities.
 Doing distributed actions should not be very different from doing the same actions

in a single computer.

 • Independence from network characteristics.
 The programmer should not be concerned with physical characteristics of the

computer network, such as network topology, addresses, etc.

 • Compatibility with legacy software.
 Non-distributed programs using System V IPC mechanisms should be able to co-

exist with distributed programs.

 • Simplicity of programming.
 Preserving the UNIX semantics would helps those programmers who are already

familiar with UNIX, and prevents the need to master some completely new
programming models. Others could benefit from the wealth of information already
available about System V IPC

 • Independence of any specific programming tool or model.
 Programmers should be able to use DIPC in any language that can access operating

system’s functions. (S)He is not limited to any specific language or software
engineering methodology.

 • Ability to turn legacy programs into distributed ones.
 It should be relatively easy to change older programs, using System V IPC

mechanisms and probably running on multi-processors, to take advantage of DIPC,
thus making them distributed programs.

 • Ability of the programmer to influence program performance.
 The main performance parameters (frequency and amount of data exchange between

machines) should be in the hands of the programmer.

4

 • Ability to develop programs on inexpensive hardware.
 Programs could be developed on a single computer and later used in a computer

cluster.

 • Running DIPC system code in user space as much as possible.
 This is the trend followed in Microkernels, though Linux is a monolithic operating

system.

 • Making DIPC work on WANs (Wide Area Networks).

 • Making DIPC work in a heterogeneous environment.

Discussion

With DIPC, programs on different computers can use the same IPC key to gain access to the
same IPC structure. This frees the programmers of learning new methods and integrates quite
naturally with the rest of the system. Making DIPC services available at the operating system
level allows other programs to use them without regard to the language or the methodology
used during the software construction, and there is no need to learn completely new ways to
do distributed computing.

Distributing System V shared memory provides Linux with DSM capabilities. Processes on
different machines can read the shared memory at the same time, and the effects of a write will
automatically become visible to others. Under DIPC, strict consistency [6] is used as the
consistency model of the shared memory. This means that the readers of the shared memory
get the most recently written values. This is very familiar to programmers. Programs can use
the shared memory as an asynchronous way of exchanging data, or they can use System V
messages to transfer data synchronously. Semaphores are used as the arbitration mechanism
for access to the shared memory or message queues.

It should be noted that DIPC provides a set of mechanisms, and is not concerned with
policies. The software designer determines how these mechanisms are used.

DIPC is targeted to work in heterogeneous environments, consisting of a network of machines
with various architectures (e.g. Motorola 68K and Intel x86 computers). It supports the
programmer in the task of converting information between different data representation
formats. Using a WAN is also an important feature. Programmers may use machines on the
Internet to accomplish a given job.

DIPC creates the notion of configurable logical clusters in a physical network, enabling
different groups of computers to collaborate on a job without disturbing other machines on the
network, which may be executing the same programs.

Current status of DIPC

5

DIPC is currently in the alpha stages of development. A port to Linux for Motorola 680x0
processors is underway. DIPC sources and the related documents can be found on the
Internet via anonymous FTP at sunsite.unc.edu in /pub/Linux/Incoming, or
/pub/Linux/system/Network/distrib/dipc. Alternatively, they can be directly obtained from the
authors.

Summary

A Simple distributed programming system was briefly introduced. The services provided by
this system are extensions to previously existing mechanisms. This is done in order to ease the
application programmer’s job. It was noted that by integrating these services within the
operating system, other layers of the system can use them transparently.

References

[1] Andrew S. Tanenbaum, Distributed Operating Systems, Prentice-Hall, 1995.

[2] Bruce P. Lester, The Art of Parallel Programming, Prentice-Hall, 1993.

[3] Robert G. Bab II, Programming Parallel Processors, Addision-Wesley, 1988.

[4] Maurice J. Bach, The Design of the UNIX Operating System, Prentice-Hall, 1986.

[5] W. Richard Stevens, Advanced Programming in the UNIX Environment, Addison-
Wesley, 1992.

[6] Bill Nitzberg and Virginia Lo, “Distributed Shared Memory: A survey of Issues and
Algorithms”, Computer, August 1991, pp. 52-60.

[7] Andrew S. Tanenbaum, Computer Networks, Prentice-Hall, 1989.

[8] W. Richard Stevens, UNIX Network Programming, Prentice-Hall, 1990.

[9] Kai Hwang, Advanced Computer Architecture, McGraw-Hill, 1993.

[10] PVM web page: http://www.epm.ornl.gov/pvm/pvm_home.html

