
1

DIPC: The Linux Way of Distributed Programming

Kamran Karimi
Department of Computer Engineering

Iran University of Science & Technology
Narmak, Tehran

Iran

E-mail: karimik@sun.iust.ac.ir

Mohsen Sharifi
Software Engineering Laboratory

Department of Computer Engineering
Iran University of Science & Technology

Narmak, Tehran
Iran

E-mail: mshar@vax.ipm.ac.ir

Abstract

Linux is an easily available and powerful operating system, but it is based on a 70s design,
making the need for the addition of more modern concepts apparent. This article lists the main
characteristics of Distributed Inter-Process Communication (DIPC), a relatively simple system
software that provides users of the Linux operating system with both the distributed shared
memory and the message passing paradigms of distributed programming. Distributed programs
using DIPC can be independent of any physical network characteristics and there is no need for
the use of any link libraries or special compilers. DIPC works by making UNIX System V IPC
mechanisms (shared memories, messages and semaphores) network transparent, thus integrating
neatly with the rest of the system. The underlying network protocol used is TCP/IP. DIPC can
work in Wide Area Networks (WANs) and in heterogeneous environments.

Introduction

Before Linux, powerful UNIX operating systems were considered a luxury. Linux made it possible for
ordinary people to have access to an affordable and reliable computing platform. The only problem is
that Linux was originally based on decades-old designs [7], making it less attractive for more technically
minded users. Linux’s answer to this problem is in either port and adaptation, or introduction of newer
concepts.

Building Multi-Computers [1] and programming them are among the more popular research subjects,
and demand for them is rapidly rising. Any solution to distributed programming under Linux should
keep up with one of Linux’s more important features: availability to ordinary users.

Motivation

Linux already has symmetric multi-processing capabilities. However, it does not provide enough
standard facilities for distributed software development. Programmers and users have to resort to
different add-on packages and various programming models to write or use distributed software. The
mechanisms provided by these packages usually differ greatly from one another, each requiring the
users to learn some new material, which won’t be of any use to them when migrating to other methods.
Many also require detailed involvement of the programmer in the process of transferring data over the

2

network. One example is the PVM (Parallel Virtual Machine) software [8]. The need for a simpler
distributed programming model, usable by more programmers, is clearly present.

The DIPC Software

DIPC (Distributed Inter-Process Communications) is a software-only solution for enabling people to
build and program multi-computers [1] easily. Each node can be an ordinary personal computer. These
nodes should be connected to each other by a TCP/IP [3] network. It does not use network
broadcasting, which helps it work in networks with no such capabilities. There is also no assumption of
the existence of a synchronized clock. These mean that DIPC could be used in a Wide Area Network
(WAN).

Right from the start, it was decided that ease of application programming, and the simplicity of the
DIPC itself should be among the most important factors in the system design, even if they meant that
there will be some loss in performance. This decision was backed by the observation that computer and
telecommunication equipment’s speeds are improving very rapidly, while training and programming
times for distributed applications seem not to be following a similar trend.

In DIPC, UNIX System V IPC mechanisms [4], consisting of semaphores, messages and shared
memories, are modified to function in a network environment. This means that installing DIPC requires
changing and recompiling the kernel. Here the same system calls that are used to provide
communication between processes running in the same computer could be used to allow the
communication of processes running on different machines. There is no new system call for the
application programmers’ use. There is also no library to be linked to the application code, and no need
for any modifications in compilers. DIPC could be used with any language that allows access to
operating system’s system calls. It is completely camouflaged in the kernel.

The above means that DIPC supports both the message passing and the distributed shared memory
paradigms of distributed programming, which results in more options for application programmers [5].
Also, allowing the processes to share only selected parts of their address space helps to reduce the
problems of false sharing.

It was decided to implement DIPC in the user space as much as possible, with minimal changes to the
kernel. This can lead to a cleaner and simpler design, but in a monolithic operating system, such as
Linux, has the drawback of requiring frequent copy operations between kernel and user address spaces
[2]. As UNIX does not allow user space processes to access and change kernel data structures at will,
DIPC has to have two parts: the more important part is a program named dipcd, which runs with
superuser privileges. dipcd forks several processes to do its work. The other part is inside the kernel,
giving dipcd work to do and also letting it to see and manipulate kernel data. The two parts use a
private system call to exchange data. This system call should not be used by other processes in the
system.

DIPC provides easy data transfer over the network, and assumes that the code to use these data already
resides at the suitable places. Then is justifiable when one Considers the fact that in most cases, the
programs’ codes change much less frequently than the data they use,

DIPC is only concerned with providing some mechanisms for distributed programming. The policies,
i.e. how a program is parallelized, or where an application program’s processes should run, are
determined by the programmer or the end user.

3

DIPC Clusters

DIPC enables the creation of clusters of PC computers. Computers in the same cluster could work
together to solve a problem. DIPC’s clusters are logical entities, meaning that they are independent of
any physical network characteristics. Computers could be added to or deleted from a cluster without the
need to change any of the network parameters. Several clusters may exist in the same physical network,
and each computer could belong to at most one of them. Computers on the same cluster may even be
connected to each other by a WAN. As far as DIPC is concerned, computers in one cluster never
interact with computers in other clusters.

In normal System V IPC, processes specify numerical keys to gain access to the same IPC structure [4].
They can then use these structures to communicate with each other. A key normally has a unique
meaning only in one computer. DIPC makes the IPC keys globally known. Here, if the application
programmer wants it, a key can have the same meaning in more than one machine. Processes on
different computers can communicate with each other the same way they did in a single machine.

Information about all the IPC keys in use are kept by one of dipcd’s processes called the referee. Each
cluster has only one referee. In fact, it is having the same referee that places computers in the same
cluster. All other processes in the cluster refer to this one to find out if a key is in use. This means that
the referee is DIPC’s name server. Beside many other duties, the referee also makes sure that only one
computer at a time will attempt to create an IPC structure with a given key value, hence the name.
Using a central entity simplifies the design and implementation, but can become a bottleneck in large
configurations. Finding a remedy to this problem is left to the time when DIPC is actually running in
such configurations.

Users may need to run some programs (e.g. utilities) in all the computers in the system at the same time,
and these programs may need to use the same IPC keys. This could create interference. So as to prevent
any unwanted interactions, it was decided that distributed IPC structures should be declared by
programmers as being so. The programmer just has to specify a flag to do this. The structures are local
by default. The mentioned flag is the only thing that the programmer should do to create a distributed
program. The rest is like ordinary System V IPC programming. Should it not have been the intention to
make DIPC compatible with older programs, this system would be totally transparent to programmers.

DIPC Programs

Here, by DIPC programs we mean distributed application programs written to be run using DIPC.

DIPC’s programming model is very simple, and quite like using ordinary System V IPC. A Typical
scenario is this: a process first creates and initializes the needed IPC structures. After that other
processes are started to collaborate on a job. All of them can access the same IPC structures and
exchange data. These processes are usually executing in remote machines, but they all could also be
running in the same computer, meaning that distributed programs can be written on a single machine and
later run in real multi-computers.

4

One important point to keep in mind about DIPC is that no other UNIX facility is changed to work in a
distributed environment. So programmers can not use system calls like fork(), which creates a process
in the local computer.

The fact that DIPC programs use numerical keys to be able to transfer data means that they do not need
to know where the corresponding IPC structures are. DIPC makes sure that processes find the needed
resources just by using the specified keys. The resources could be located in different computers during
different runs of a distributed program. This logical addressing of resources makes the programs
independent of any physical network characteristics.

Simple techniques allow the mapping from logical computing resources needed by a program to physical
resources to be done with no need to re-make the program. As DIPC programs do not need to use any
physical network addresses, they do not need recompiling to run in new environments. Of course this
does not prevent the programmer from choosing to make his/her program dependent on some physical
system characteristics. (S)He could for example hard code a computer address in his code. DIPC
programmers are discouraged to do so.

When dipcd is not running, the kernel parts of DIPC are short circuited, causing the system to behave
like a normal Linux operating system. So users can easily disable the distributed system. Also, normal
Linux kernels are not affected by DIPC programs, meaning that the there is no need to change and
recompile these programs when they are to be executed in single computers with no DIPC support.

DIPC’s Distributed Shared Memory

Distributed Shared Memory (DSM) [6] in DIPC uses a multiple-readers / single-writer protocol: DIPC
replicates the contents of the shared memory in each computer with reader processes, so they can work
in parallel, but there can be only one computer with processes that write to a shared memory. The strict
consistency model is used here, meaning that a read will return the most recently written value. It also
means that there is no need for the programmer to do any special synchronization activity when
accessing a distributed shared memory segment. The most important disadvantage with this scheme is a
possible loss of performance in comparison to other DSM consistency models.

DIPC can be configured to provide a segment-based or a page-based DSM. In the first case, DIPC
transfers the whole contents of the shared memory from computer to computer, with no regard to
whether all that data are to be used or not. This could reduce the data transfer administration time. In
the page-based mode, 4KB pages are transferred as needed. This makes multiple parallel writes to
different pages possible.

In DIPC each computer is allowed to access the shared memory for at least a configurable time
quantum. This lessens the chances of the shared memory being transferred frequently over the network,
which could result in very bad performance.

Error Detection in DIPC

DIPC assumes a fail-stop [9] distributed environment. So it uses time-outs to find out about any
problem. The at-most-once semantics [1] is used here, meaning that DIPC tries everything only
once. In case of an error, it just informs the relevant processes about it, either by a system call

5

return value, or, for shared memory read/writes, via a signal. DIPC itself does not do anything
to overcome the problem. The user processes should decide how to deal with the error. This is
the normal behavior in many other cases in UNIX .

Security in DIPC

It is important to provide some means to make sure that the data are accessed only by people
who are allowed to do so. DIPC uses login names, and not user-ids to identify users. Remote
operations are performed after assuming the identity of the person that executed the system call
originally. For this to work, the same login name on all the computers in a DIPC cluster should
denote the same person.

In order to prevent intrusion to DIPC clusters, addresses of the computers that are allowed to
take part in a cluster should be put in a file (/etc/dipc.allow) for DIPC to consult.

Current status of DIPC

DIPC is under development mainly in Iran University of Science and Technology’s (IUST)
Department of Computer Engineering, but currently people from different parts of the world are
working on it. A port to Linux for Motorola 680x0 processors has been completed. This made
DIPC a heterogeneous system, as the two versions can talk to each other. DIPC’s sources and
related documents can be found on the Internet via anonymous FTP at sunsite.unc.edu, in
/pub/Linux/system/network/distrib/dipc, or you could download it from DIPC’s web page, at
http://wallybox.cei.net/dipc.

Conclusion

DIPC is a simple distributed system that works by bringing new functionality to an IPC system
designed decades ago. Many of the DIPC’s nicer features are the result of its being hidden inside
the kernel. Considering its main characteristics, DIPC has the potential to introduce ordinary
programmers to distributed programming, thus making Linux one the first operating systems
with usable and really used distributed programming facilities.

There are many experimental distributed systems available for use. Many of them have been
implemented in universities, using workstations produced by different manufacturers, and
running UNIX variants. The fact that in most cases, researchers did not have free access to the
underlying operating system’s source code has had a big influence on the design decisions. The
availability of source code in Linux has provided new ways to deal with the problems of
distributed programming. DIPC is an example of what can be done when one has more access
to the operating system sources. Some could mention the problems in porting DIPC to propriety
operating systems with no publicly available source code as a draw back. However, in our
opinion, propriety operating system vendors and their users are at a loss here, as they can not
take advantage of more easy-to-use distributed systems developed by third parties.

The above does not mean that DIPC could not be implemented in other UNIX variants
supporting System V IPC, but implies that the port can only be attempted by people with more
access to kernel source code.

6

References

[1] Andrew S. Tanenbaum, Distributed Operating Systems, Prentice-Hall, 1995.
[2] Andrew S. Tanenbaum, Operating Systems Design and Implementation, Prentice-Hall,

1987.
[3] Andrew S. Tanenbaum, Computer Networks, Prentice-Hall, 1989.
[4] W. Richard Stevens, Advanced Programming in the UNIX Environment, Addison-

Wesley, 1992.
[5] Robert G. Babb II, editor, Programming Parallel Processors, Addison-Wesley, 1988.
[6] Bill Nitzberg and Virginia Lo, “Distributed Shared Memory: A Survey of Issues and

Algorithms”, Computer, August 1991, pp 52-60.
[7] Maurice J. Bach, The Design of the UNIX Operating System, Prentice-Hall, 1986.
[8] PVM web page: http://www.epm.ornl.gov/pvm/pvm_home.html
[9] Alan Burns and Andy Wellings, Real-Time Systems and Their Programming Languages,

Addison-Wesley, 1990.

