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Abstract 
In this paper we propose a way to perform robotic self-

recognition in static and quasi-static environments. self-

recognition is a process during which the robot discovers 

the effects of its own actions on the environment and itself. 

For example, how much would the robot move when its 

wheels turn once? Such information can be hard-coded into 

the robot’s code, but it can also be discovered automatically. 

self-recognition can be used when the robot or the 

environment are unknown a priori or change. Examples are 

when new wheels or a completely new robot is used, or 

when obstacles are added to the environment. Instead of re-

programming, the user can let the robot “play” and discover 

how to change its situation. In this way only the self-

recognition phase should be repeated, while the high level 

planning strategy can remain the same. 

Keywords: Robot Programming; Data mining; Artificial 

Intelligence. 

 

1. Introduction 
Programming robots that move in environments not known 

a priori usually is a non-trivial task. A domain expert may 

be the only source of knowledge about the environment and 

the task to be performed by a robot, because the semantics 

of the domain are not evident from a robot's perspective. To 

achieve a goal, not only the input from the sensors should 

be analysed and a plan of actions produced, but the results 

of each action in the environment of the robot must also be 

known. The knowledge about the effect of each action is 

commonly extracted by the domain expert based on the 

physical characteristics of the robot and the environment, 

which are then hard coded into the plan. The problem with 

this approach is that if the robot or the environment 

changes, the program should be changed too. Examples of 

change in a robot include different or new actuators, or a 

different design. An example of a change in environment 

would be a new room layout, or obstacles being added, 

removed, or moved around. After a change, the same 

commands as before the change may not result in the same 

outcome. 

In this paper we are not concerned with the high-level 

plan generator, which we assume is written by a domain 

expert. Rather, we target the automation of the process of 

discovering the effects of the actions of a robot. This 

information is crucial to any high-level plan generator, and 

facilitates the re-adaptation of a robot motion planner once 

the robot or its environment has changed. Through a process 

that we call self-recognition, a robot is allowed to explore 

the effects of its actions. After that rules are extracted to 

represent the effects of any action by the robot. They are 

then used by a high-level plan generator, which, knowing 

the effects of the actions of the robot, comes up with a 

sequence of actions to guide the robot from the current 

situation to a desired situation. A robot that operates in a 

changing environment may be able to perform self-

recognition as it explores the effects of it actions on the 

environment. However, some plans may fail because of lack 

of information about the environment (e.g. unexplored 

areas) or because of failed actions (e.g. obstacles were 

moved in the environment). If a plan fails, the self-

recognition part of the planning process should be repeated.  

There are three assumptions essential to our method. 

First, we assume a limited space of operation, and hence a 

limited search space. This requirement is satisfied for 

robotic arms or mobile robots that operate in a confined 

area. The second assumption is that the robot and its 

environment are static or quasi-static, that is, the shape of 

the robot or the locations of obstacles do not change often. 

The reason for these assumptions is that the process of self-

recognition is performed off-line, so it cannot learn as it is 

executing a plan. The third assumption is that the robot can 

both affect and perceive its environment, so that it can 

register the effects of its own actions.  

The rest of the paper is organised as follows. In Section 2 

we present the self-recognition process. Section 3 shows 

why some of the characteristics of the self-recognition 

method, such as the preference towards exhaustive searches, 

can be of use. Section 4 briefly considers a possible 

implementation of the self-recognition method. Section 5 

concludes the paper. 

 

2. How Self-recognition works  
The self-recognition problem is defined as automatic 

discovery of the effects of an action performed by the robot 

in its environment.  

We consider two possible ways to represent the location 

of the end point of a 2-dof (degrees of freedom) planar 

robotic arm: at a low level, we can use the angular position 



of the shoulder and the elbow, as in the proposition 

Position(θs, θe) where θs is the angular position of the 

shoulder, and θe is the angular position of the elbow. 

The problem with this approach is that many different 

configurations will correspond to the same robot’s tip 

position, and this number increases exponentially with the 

degrees of freedom of the robot. We need to reduce this 

number if we are to be able to handle the representation and 

programming phases. For representing the position of the 

robot’s tip one can use the grid number: Position(N) where 

N is the grid number where the tip is located. 

With the location determined, we now consider observing 

the effects of the robot’s moves. First the current situation 

of the robot and the environment are perceived through the 

robot's sensors. Then actions are generated and executed 

one by one. The possible changes in the robot and the 

environment are observed and recorded. For example if we 

are observing the robot’s position, this method results in a 

series of data records of the form <Positioncurrent, action, 

Positionnext>. This change of the situations while performing 

an action has been the basis for Situation Calculus [3]. Since 

we can get to the same situation through different paths, the 

result is a graph where nodes are the positions. The nodes 

are connected to each other by the edges that are actions, 

and lead from one position to another. The robot thus learns 

how it can move from one position to the next. In a finite 

space it is possible for the robot to explore all the positions.  

After obtaining the motion graph, we can use it to go to a 

desired node. To do this a high-level planning strategy 

selects a desired goal (node) for the robot, and planning is 

reduced to finding a path within the graph from the current 

node to the destination. The graph is traversed node by 

node. Failure recovery is automatically provided. If the 

results of an action do not lead to the expected situation (the 

wheels slip, or the user moves the robotic arm away, for 

example), then the new node is noted and a new path, from 

the current node/situation to the desired one, is plotted. The 

plan fails if it is not possible to come up with a path from 

the current (unexpected) situation to the destination.  

After the robot has explored its space, possibly covering 

some positions many times, the exploration can be stopped. 

At this point the rule discovery phase begins. This can be 

carried out by different methods. In a classification 

problem, a program such as C4.5 can be employed. One 

example rule could be: if {(x = 1 AND y = 3 AND action = 

Right)} then x = 2. This rule determines that when in 

position (1, 3), a move to the right will result in an increase 

in the x value and result in position (2, 3). 

The main requirement is that all the grid points have been 

explored by the robot’s tip. It should be noted that this 

requirement is much easier to accommodate than the need to 

cover all angular values that the robot’s joints can accept. 

When all the grid points have been covered (the tip has been 

in all of them, and the start position has been visited at least 

twice), we are guaranteed that we can navigate the tip 

anywhere. 

This is done by backward chaining, which means that to 

go from one grid location to the next, we plot a route 

backward from the destination node to the source node, and 

then follow the route in the forward direction. 

The rules can thus be employed by a plan generator, 

which determines where the robot should go to, and then 

consults the rules to navigate the robot from its current 

position to the desired position. If the robot or the 

environment changes, new rules should be extracted, but the 

high-level planning strategy can be left unchanged. 

We have developed the TimeSleuth software to 

automatically extract rules from raw data. TimeSleuth is a 

tool for discovering causality based on time [5]. It is a 

suitable aide in plan generation because a plan is a sequence 

of actions that causes change in the environment. In this 

paper we assume that the effects of each action are known 

in the next time step, but with TimeSleuth the user can 

investigate the possibility that the effects will be known 

after a number of time steps. Also, TimeSleuth can output 

the rules it discovers as Prolog statements, which can then 

be readily executed, or converted into complete plans after 

some modifications [3, 4].  
 

2. Justification of the proposed approach 
In this section some problem domains, in the realm of 

robot motion planning in which the proposed method can be 

applied are investigated. The classical robot motion 

planning problem is defined as; “finding a collision-free 

path for a robot equipped with sensors to move from a start 

configuration to a goal configuration in environments not 

known a priori”. This is also referred to as a point-to-point 

motion planning problem [6]. Additional constraints such as 

the minimum length of the path, its maximum clearance 

with obstacles, and the overall motion time will contribute 

to the complexity of the motion planning problem further. 

Minimizing the overall motion time is of particular interest 

in scenarios in which the environment is changing (i.e., 

dynamic environments). An example would be the robotic 

interception of moving objects, [1]. 

Many researchers have studied the robotic interception 

problem in the past two decades. A variety of techniques 

have been suggested under the assumption that no static 

obstacle exists in robot’s work space, [e.g., 2, 7]. 

Mehrandezh et al. developed a novel time-optimal motion 

planning of co-operating robotic arms in a sequential task-

sharing mode in presence of obstacles, [8]. Time-optimal 

robotic interception problem in presence of static obstacles 

needs an exhaustive search method (i.e., dynamic 

programming). There is always a trade off between the 

complexity of the interception algorithm and the deviation 

from the global optimal motion time. Existing time-optimal 

interception schemes cannot be implemented in real-time 

due to the massive calculations needed. Therefore, real-time 

implementation of these techniques remains a challenging 

problem. The proposed self-recognition strategy would take 

the burden off the shoulders of the motion planner, making 

real-time interception planning realizable. 



In general, robotic interception problem can be divided 

into two stages; (1) coarse, and (2) fine motion planning. In 

the first stage, the motion planner will bring the robot to the 

vicinity of the moving object. In the second stage, a fine-

tuned motion-tracking algorithm takes over, bringing the 

robot to precise interception location for capturing the 

object. The self-recognition technique can provide the 

coarse motion planning stage with information that can be 

utilized to achieve a fast (but not very precise) interception 

planning strategy. 

One should note that the low-level rules derived through the 

self-recognition algorithm are all position/action-based. A 

mapping will be needed to translate these position/action-

based rules to a position-velocity space. Overall motion 

time of the robot moving between any two configurations 

(given that these two configurations belong to the graph 

developed by the self-recognition technique) can be 

deducted from the information embedded within this 

position-velocity space. This would facilitate the real-time 

implementation of the high-level interception planning 

strategy. 

 

4. Implementation considerations  
Implementing self-recognition in a real environment 

requires some considerations, as we will describe in this 

section for a robotic arm. Since we are using an exhaustive 

search method, we need to reduce the size of the physical 

space. We achieve this by discretising the space (see Figure 

1). 
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Fig. 1. The space is discretised into 16 different locations 

 

We represent each situation as the place where the tip of the 

robot lies. The Markov condition states that the history of a 

system is of no effect when performing an operation at the 

present time. This is a great simplifying assumption, and 

holds in the artificial robot environment. To illustrate this 

concept let us assume that the robot’s tip is located on the 

cell 6. The robot can be inside cell 6, but not exactly on the 

centre. If each time the arm is in cell 6 the exact location 

differs, then after a while a specific amount of movement 

may result in positioning the robot’s tip in a different cell. 

For example, in one case the tip may move to position 7, 

and in another case it may remain in position 6 because it 

has been placed too far from cell 7. This reliability on the 

history of the tip's movement means that the Markov 

condition is violated. The same rule may fail or work, 

depending on how the tip was moved before. This property 

complicates planning, and must be resolved. 

For this reason we assume that the tip always positions itself 

on the centre of a grid location. The robot will move from 

one point to another, along the x or y axis (and z, if the 

space is three-dimensional). If the robot detects a problem 

in moving to the destination, either due to a collision or 

because the robot's limits of movement have been reached, 

then the tip will be put back on the starting position. For 

each tip position there can be many angular values for the 

robot's joints. This number is two for a robot with 2 degrees 

of freedom, one called the elbow-up position and the other 

the elbow-down position. For a robot with more degrees of 

freedom, this number can be very large. With two degrees 

of freedom we can compute the angular values easily. For 

more degrees of freedom, the problem can be solved by 

finding solutions for min{w1 × d
1
 + w2 × d

2
 + w3 × d

3
}, 

where we assume the robot has 3 degrees of freedom, ws are 

weights, and ds are the angular values for the joints. The 

computed values are stored in tables, to be used for mapping 

from the physical space to the configuration space (i.e., a 

space where the robot can be represented as a point 

denoting its configuration). To move from one point to 

another, the source and target angular values will be 

extracted, and used to guide the robot's tip. The following 

pseudo code explains the idea: 
#define X_DISCRETE 10 

#define Y_DISCRETE 10 

int shoulder_table[X_DISCRETE][Y_DISCRETE]; 

int elbow_table[X_DISCRETE][Y_DISCRETE]; 

// generate the data needed for movement, then play 

Computer_Angular_Values(); 

loop {   //  play as long as needed 

  x0, y0 = Get_Current_pos(); 

  M = Generate_Next_Move(); // select destination 

  x1, y1 = Determine_Where_M_Is();  // Which grid? 

  Shoulder = shoulder_table[x1][y1]; 

  Elbow = elbow_table[x1][y1]; 

  Robot_MoveTo(current_pos, next_pos); // try a move 

  x1, y1 = Get_Current_Pos();   // where did we end up? 

  Output(x0, y0 , M, x2, y2 );   // display the results 

 }  

During the self-recognition phase, the destination can be 

selected by any method. The moves can be generated 

randomly, systematically, or by some other heuristic. 

We assume the environment is quasi static, meaning that 

changes do not happen often. This allows us to be able to 

use the rules that are extracted for a while, before being 

forced to generate them again, as shown in the following 

algorithm: 
forever do { 

 observations = motion_generation();  

 rules = learning(observations); // TimeSleuth  

 while(planning(rules) == true); // break if failure 

} 

If a plan fails, then an assumption about the environment 

has become violated. At this point the robot explores the 

area again, and generates a new set of rules. In a quasi-static 

environment this will not happen very often. 

A reliable robot motion planning technique would require 

a huge amount of online collision detection which can be 

computationally expensive. By using the rules generated at 

the learning phase, we do not have to check for collisions 

any more, reducing the computational requirements 



considerably. Skin-type sensors can be put on the robot in 

the self-recognition phase to detect collisions and then 

removed after the environment has been explored. 

We have experimented with this method to create a 

planner for an artificial robot that moves in a 2-Dimensional 

environment called URAL. The rules governing the 

movements of the robot are converted into Prolog 

statements and then combined to guide the robot from a 

starting position to a finishing position [3, 4]. 

In what follows X refers to the robot's position along 

the x axis, and A refers to the action (direction of 

movement). Table 1 shows parts of an example set of 

Prolog statements generated by TimeSleuth when the 

decision attribute is x2. In general, for an N × M board, there 

are N × 4 Prolog statements generated for moving along the 

x axis (from left, right, top, or bottom positions). Likewise, 

there are M × 4 statements for moving along the y axis. 

 

class(A1, X1, 0) :- A1 = 2, X1 = 1. 

class(A1, X1, 2) :- A1 = 3, X1 = 1. 

class(A1, X1, 3) :- A1 = 2, X1 = 4. 

class(A1, X1, 3) :- A1 = 3, X1 = 2. 

Table 1. Sample Prolog statements 

 

In Table 1 a value of 2 and 3 for action A1 could mean 

going to the left and right, respectively. Following a 

classification terminology, the results are designated by a 

predicate called "class." The condition attributes (action A1 

and position X1 in this case) come first, and the value of the 

decision attribute (the next value of x) comes last. In the 

head of the rules, the condition attributes are used for the 

decision making process. In our example temporal data, A1 

and X1 belong to the current time step, while the 

classification is done for the value of x in the next time step. 

For example, the first Prolog statement in Table 1 says that 

if the robot is at position 1, and there is a move towards left 

(action is 2), then the next value of x is 0.  

There is no mention of the y axis in this table because 

in this example the movements along the x and y axis are 

independent of each other. These statements can be 

executed in both a forward and a backward direction. For 

example, the user can invoke the command class(A1, X1, 2) 

(what should the robot do if it wants to move to the x 

location 2? The results will be a list of actions/position 

combinations that will lead to x = 2. Conversely, the user 

can issue queries like class(2, 4, X2) (where does the robot 

go from x = 4 if it moves to left?) to determine the effects of 

an action. If we are dealing with more than one sensor 

attribute (x and y for example) we could rename "class" to 

something like "classx" to avoid name clashes. 

For planning we assume that we are already at the 

destination and then find a way back to the starting location. 

For example suppose we want the robot to go from location 

1 to location 3 along the x axis. In Table 1, from the fourth 

statement we find a way to go from location 2 to location 3, 

(by moving right). Now the problem is to get from location 

1 to location 2, and the second statement in Table 1 has the 

answer (move right from 1).  The plan now consists of 

starting as location 1 and moving to the right twice by 

executing the second and the fourth Prolog statements. For 

more details of planning with such Prolog statements see [3, 

4]. 

 

5. Concluding remarks 
In this paper we proposed a method for a robot to 

discover the results of its own actions. Once this 

information is available, a planner can put them together 

and create high level plans. We argue that with self-

recognition, the high-level planning algorithm does not need 

to be changed as the robot or its environment changes. The 

basic rules regarding the results of an action do change, but 

self-recognition proposes a play phase in which these results 

are discovered automatically. The domain- and robot-

dependent parts of the problem are handled by automating 

the task of detecting the effects of the actions of the robot. 

The main draw back is the need for exhaustive search of the 

domain, which makes this method less suitable in large 

domains or when a high amount of uncertainty associated 

with sensory data or probability of failure is present.  

TimeSleuth and URAL can be downloaded freely from 

http://www.cs.uregina.ca/~karimi/downloads.html. 
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