
A Proposal for Self-Recognition in Robot Programming

Kamran Karimi
1
, Mehran Mehrandezh

2
, Howard J. Hamilton

1

1
 Department of Computer Science

University of Regina

Regina, Saskatchewan

Canada S4S 0A2

{karimi, hamilton}@cs.uregina.ca

2
Department of Industrial Engineering

University of Regina

Regina, Saskatchewan

Canada S4S 0A2

Mehran.Mehrandezh@uregina.ca

Abstract
In this paper we propose a way to perform robotic self-

recognition in static and quasi-static environments. self-

recognition is a process during which the robot discovers

the effects of its own actions on the environment and itself.

For example, how much would the robot move when its

wheels turn once? Such information can be hard-coded into

the robot’s code, but it can also be discovered automatically.

self-recognition can be used when the robot or the

environment are unknown a priori or change. Examples are

when new wheels or a completely new robot is used, or

when obstacles are added to the environment. Instead of re-

programming, the user can let the robot “play” and discover

how to change its situation. In this way only the self-

recognition phase should be repeated, while the high level

planning strategy can remain the same.

Keywords: Robot Programming; Data mining; Artificial

Intelligence.

1. Introduction
Programming robots that move in environments not known

a priori usually is a non-trivial task. A domain expert may

be the only source of knowledge about the environment and

the task to be performed by a robot, because the semantics

of the domain are not evident from a robot's perspective. To

achieve a goal, not only the input from the sensors should

be analysed and a plan of actions produced, but the results

of each action in the environment of the robot must also be

known. The knowledge about the effect of each action is

commonly extracted by the domain expert based on the

physical characteristics of the robot and the environment,

which are then hard coded into the plan. The problem with

this approach is that if the robot or the environment

changes, the program should be changed too. Examples of

change in a robot include different or new actuators, or a

different design. An example of a change in environment

would be a new room layout, or obstacles being added,

removed, or moved around. After a change, the same

commands as before the change may not result in the same

outcome.

In this paper we are not concerned with the high-level

plan generator, which we assume is written by a domain

expert. Rather, we target the automation of the process of

discovering the effects of the actions of a robot. This

information is crucial to any high-level plan generator, and

facilitates the re-adaptation of a robot motion planner once

the robot or its environment has changed. Through a process

that we call self-recognition, a robot is allowed to explore

the effects of its actions. After that rules are extracted to

represent the effects of any action by the robot. They are

then used by a high-level plan generator, which, knowing

the effects of the actions of the robot, comes up with a

sequence of actions to guide the robot from the current

situation to a desired situation. A robot that operates in a

changing environment may be able to perform self-

recognition as it explores the effects of it actions on the

environment. However, some plans may fail because of lack

of information about the environment (e.g. unexplored

areas) or because of failed actions (e.g. obstacles were

moved in the environment). If a plan fails, the self-

recognition part of the planning process should be repeated.

There are three assumptions essential to our method.

First, we assume a limited space of operation, and hence a

limited search space. This requirement is satisfied for

robotic arms or mobile robots that operate in a confined

area. The second assumption is that the robot and its

environment are static or quasi-static, that is, the shape of

the robot or the locations of obstacles do not change often.

The reason for these assumptions is that the process of self-

recognition is performed off-line, so it cannot learn as it is

executing a plan. The third assumption is that the robot can

both affect and perceive its environment, so that it can

register the effects of its own actions.

The rest of the paper is organised as follows. In Section 2

we present the self-recognition process. Section 3 shows

why some of the characteristics of the self-recognition

method, such as the preference towards exhaustive searches,

can be of use. Section 4 briefly considers a possible

implementation of the self-recognition method. Section 5

concludes the paper.

2. How Self-recognition works
The self-recognition problem is defined as automatic

discovery of the effects of an action performed by the robot

in its environment.

We consider two possible ways to represent the location

of the end point of a 2-dof (degrees of freedom) planar

robotic arm: at a low level, we can use the angular position

of the shoulder and the elbow, as in the proposition

Position(θs, θe) where θs is the angular position of the

shoulder, and θe is the angular position of the elbow.

The problem with this approach is that many different

configurations will correspond to the same robot’s tip

position, and this number increases exponentially with the

degrees of freedom of the robot. We need to reduce this

number if we are to be able to handle the representation and

programming phases. For representing the position of the

robot’s tip one can use the grid number: Position(N) where

N is the grid number where the tip is located.

With the location determined, we now consider observing

the effects of the robot’s moves. First the current situation

of the robot and the environment are perceived through the

robot's sensors. Then actions are generated and executed

one by one. The possible changes in the robot and the

environment are observed and recorded. For example if we

are observing the robot’s position, this method results in a

series of data records of the form <Positioncurrent, action,

Positionnext>. This change of the situations while performing

an action has been the basis for Situation Calculus [3]. Since

we can get to the same situation through different paths, the

result is a graph where nodes are the positions. The nodes

are connected to each other by the edges that are actions,

and lead from one position to another. The robot thus learns

how it can move from one position to the next. In a finite

space it is possible for the robot to explore all the positions.

After obtaining the motion graph, we can use it to go to a

desired node. To do this a high-level planning strategy

selects a desired goal (node) for the robot, and planning is

reduced to finding a path within the graph from the current

node to the destination. The graph is traversed node by

node. Failure recovery is automatically provided. If the

results of an action do not lead to the expected situation (the

wheels slip, or the user moves the robotic arm away, for

example), then the new node is noted and a new path, from

the current node/situation to the desired one, is plotted. The

plan fails if it is not possible to come up with a path from

the current (unexpected) situation to the destination.

After the robot has explored its space, possibly covering

some positions many times, the exploration can be stopped.

At this point the rule discovery phase begins. This can be

carried out by different methods. In a classification

problem, a program such as C4.5 can be employed. One

example rule could be: if {(x = 1 AND y = 3 AND action =

Right)} then x = 2. This rule determines that when in

position (1, 3), a move to the right will result in an increase

in the x value and result in position (2, 3).

The main requirement is that all the grid points have been

explored by the robot’s tip. It should be noted that this

requirement is much easier to accommodate than the need to

cover all angular values that the robot’s joints can accept.

When all the grid points have been covered (the tip has been

in all of them, and the start position has been visited at least

twice), we are guaranteed that we can navigate the tip

anywhere.

This is done by backward chaining, which means that to

go from one grid location to the next, we plot a route

backward from the destination node to the source node, and

then follow the route in the forward direction.

The rules can thus be employed by a plan generator,

which determines where the robot should go to, and then

consults the rules to navigate the robot from its current

position to the desired position. If the robot or the

environment changes, new rules should be extracted, but the

high-level planning strategy can be left unchanged.

We have developed the TimeSleuth software to

automatically extract rules from raw data. TimeSleuth is a

tool for discovering causality based on time [5]. It is a

suitable aide in plan generation because a plan is a sequence

of actions that causes change in the environment. In this

paper we assume that the effects of each action are known

in the next time step, but with TimeSleuth the user can

investigate the possibility that the effects will be known

after a number of time steps. Also, TimeSleuth can output

the rules it discovers as Prolog statements, which can then

be readily executed, or converted into complete plans after

some modifications [3, 4].

2. Justification of the proposed approach
In this section some problem domains, in the realm of

robot motion planning in which the proposed method can be

applied are investigated. The classical robot motion

planning problem is defined as; “finding a collision-free

path for a robot equipped with sensors to move from a start

configuration to a goal configuration in environments not

known a priori”. This is also referred to as a point-to-point

motion planning problem [6]. Additional constraints such as

the minimum length of the path, its maximum clearance

with obstacles, and the overall motion time will contribute

to the complexity of the motion planning problem further.

Minimizing the overall motion time is of particular interest

in scenarios in which the environment is changing (i.e.,

dynamic environments). An example would be the robotic

interception of moving objects, [1].

Many researchers have studied the robotic interception

problem in the past two decades. A variety of techniques

have been suggested under the assumption that no static

obstacle exists in robot’s work space, [e.g., 2, 7].

Mehrandezh et al. developed a novel time-optimal motion

planning of co-operating robotic arms in a sequential task-

sharing mode in presence of obstacles, [8]. Time-optimal

robotic interception problem in presence of static obstacles

needs an exhaustive search method (i.e., dynamic

programming). There is always a trade off between the

complexity of the interception algorithm and the deviation

from the global optimal motion time. Existing time-optimal

interception schemes cannot be implemented in real-time

due to the massive calculations needed. Therefore, real-time

implementation of these techniques remains a challenging

problem. The proposed self-recognition strategy would take

the burden off the shoulders of the motion planner, making

real-time interception planning realizable.

In general, robotic interception problem can be divided

into two stages; (1) coarse, and (2) fine motion planning. In

the first stage, the motion planner will bring the robot to the

vicinity of the moving object. In the second stage, a fine-

tuned motion-tracking algorithm takes over, bringing the

robot to precise interception location for capturing the

object. The self-recognition technique can provide the

coarse motion planning stage with information that can be

utilized to achieve a fast (but not very precise) interception

planning strategy.

One should note that the low-level rules derived through the

self-recognition algorithm are all position/action-based. A

mapping will be needed to translate these position/action-

based rules to a position-velocity space. Overall motion

time of the robot moving between any two configurations

(given that these two configurations belong to the graph

developed by the self-recognition technique) can be

deducted from the information embedded within this

position-velocity space. This would facilitate the real-time

implementation of the high-level interception planning

strategy.

4. Implementation considerations
Implementing self-recognition in a real environment

requires some considerations, as we will describe in this

section for a robotic arm. Since we are using an exhaustive

search method, we need to reduce the size of the physical

space. We achieve this by discretising the space (see Figure

1).

 1 2 3 4

 → 5 6 7 8

 9 10 11 12

 13 14 15 16

Fig. 1. The space is discretised into 16 different locations

We represent each situation as the place where the tip of the

robot lies. The Markov condition states that the history of a

system is of no effect when performing an operation at the

present time. This is a great simplifying assumption, and

holds in the artificial robot environment. To illustrate this

concept let us assume that the robot’s tip is located on the

cell 6. The robot can be inside cell 6, but not exactly on the

centre. If each time the arm is in cell 6 the exact location

differs, then after a while a specific amount of movement

may result in positioning the robot’s tip in a different cell.

For example, in one case the tip may move to position 7,

and in another case it may remain in position 6 because it

has been placed too far from cell 7. This reliability on the

history of the tip's movement means that the Markov

condition is violated. The same rule may fail or work,

depending on how the tip was moved before. This property

complicates planning, and must be resolved.

For this reason we assume that the tip always positions itself

on the centre of a grid location. The robot will move from

one point to another, along the x or y axis (and z, if the

space is three-dimensional). If the robot detects a problem

in moving to the destination, either due to a collision or

because the robot's limits of movement have been reached,

then the tip will be put back on the starting position. For

each tip position there can be many angular values for the

robot's joints. This number is two for a robot with 2 degrees

of freedom, one called the elbow-up position and the other

the elbow-down position. For a robot with more degrees of

freedom, this number can be very large. With two degrees

of freedom we can compute the angular values easily. For

more degrees of freedom, the problem can be solved by

finding solutions for min{w1 × d
1
 + w2 × d

2
 + w3 × d

3
},

where we assume the robot has 3 degrees of freedom, ws are

weights, and ds are the angular values for the joints. The

computed values are stored in tables, to be used for mapping

from the physical space to the configuration space (i.e., a

space where the robot can be represented as a point

denoting its configuration). To move from one point to

another, the source and target angular values will be

extracted, and used to guide the robot's tip. The following

pseudo code explains the idea:
#define X_DISCRETE 10

#define Y_DISCRETE 10

int shoulder_table[X_DISCRETE][Y_DISCRETE];

int elbow_table[X_DISCRETE][Y_DISCRETE];

// generate the data needed for movement, then play

Computer_Angular_Values();

loop { // play as long as needed

 x0, y0 = Get_Current_pos();

 M = Generate_Next_Move(); // select destination

 x1, y1 = Determine_Where_M_Is(); // Which grid?

 Shoulder = shoulder_table[x1][y1];

 Elbow = elbow_table[x1][y1];

 Robot_MoveTo(current_pos, next_pos); // try a move

 x1, y1 = Get_Current_Pos(); // where did we end up?

 Output(x0, y0 , M, x2, y2); // display the results

 }

During the self-recognition phase, the destination can be

selected by any method. The moves can be generated

randomly, systematically, or by some other heuristic.

We assume the environment is quasi static, meaning that

changes do not happen often. This allows us to be able to

use the rules that are extracted for a while, before being

forced to generate them again, as shown in the following

algorithm:
forever do {

 observations = motion_generation();

 rules = learning(observations); // TimeSleuth

 while(planning(rules) == true); // break if failure

}

If a plan fails, then an assumption about the environment

has become violated. At this point the robot explores the

area again, and generates a new set of rules. In a quasi-static

environment this will not happen very often.

A reliable robot motion planning technique would require

a huge amount of online collision detection which can be

computationally expensive. By using the rules generated at

the learning phase, we do not have to check for collisions

any more, reducing the computational requirements

considerably. Skin-type sensors can be put on the robot in

the self-recognition phase to detect collisions and then

removed after the environment has been explored.

We have experimented with this method to create a

planner for an artificial robot that moves in a 2-Dimensional

environment called URAL. The rules governing the

movements of the robot are converted into Prolog

statements and then combined to guide the robot from a

starting position to a finishing position [3, 4].

In what follows X refers to the robot's position along

the x axis, and A refers to the action (direction of

movement). Table 1 shows parts of an example set of

Prolog statements generated by TimeSleuth when the

decision attribute is x2. In general, for an N × M board, there

are N × 4 Prolog statements generated for moving along the

x axis (from left, right, top, or bottom positions). Likewise,

there are M × 4 statements for moving along the y axis.

class(A1, X1, 0) :- A1 = 2, X1 = 1.

class(A1, X1, 2) :- A1 = 3, X1 = 1.

class(A1, X1, 3) :- A1 = 2, X1 = 4.

class(A1, X1, 3) :- A1 = 3, X1 = 2.

Table 1. Sample Prolog statements

In Table 1 a value of 2 and 3 for action A1 could mean

going to the left and right, respectively. Following a

classification terminology, the results are designated by a

predicate called "class." The condition attributes (action A1

and position X1 in this case) come first, and the value of the

decision attribute (the next value of x) comes last. In the

head of the rules, the condition attributes are used for the

decision making process. In our example temporal data, A1

and X1 belong to the current time step, while the

classification is done for the value of x in the next time step.

For example, the first Prolog statement in Table 1 says that

if the robot is at position 1, and there is a move towards left

(action is 2), then the next value of x is 0.

There is no mention of the y axis in this table because

in this example the movements along the x and y axis are

independent of each other. These statements can be

executed in both a forward and a backward direction. For

example, the user can invoke the command class(A1, X1, 2)

(what should the robot do if it wants to move to the x

location 2? The results will be a list of actions/position

combinations that will lead to x = 2. Conversely, the user

can issue queries like class(2, 4, X2) (where does the robot

go from x = 4 if it moves to left?) to determine the effects of

an action. If we are dealing with more than one sensor

attribute (x and y for example) we could rename "class" to

something like "classx" to avoid name clashes.

For planning we assume that we are already at the

destination and then find a way back to the starting location.

For example suppose we want the robot to go from location

1 to location 3 along the x axis. In Table 1, from the fourth

statement we find a way to go from location 2 to location 3,

(by moving right). Now the problem is to get from location

1 to location 2, and the second statement in Table 1 has the

answer (move right from 1). The plan now consists of

starting as location 1 and moving to the right twice by

executing the second and the fourth Prolog statements. For

more details of planning with such Prolog statements see [3,

4].

5. Concluding remarks
In this paper we proposed a method for a robot to

discover the results of its own actions. Once this

information is available, a planner can put them together

and create high level plans. We argue that with self-

recognition, the high-level planning algorithm does not need

to be changed as the robot or its environment changes. The

basic rules regarding the results of an action do change, but

self-recognition proposes a play phase in which these results

are discovered automatically. The domain- and robot-

dependent parts of the problem are handled by automating

the task of detecting the effects of the actions of the robot.

The main draw back is the need for exhaustive search of the

domain, which makes this method less suitable in large

domains or when a high amount of uncertainty associated

with sensory data or probability of failure is present.

TimeSleuth and URAL can be downloaded freely from

http://www.cs.uregina.ca/~karimi/downloads.html.

References
[1] Geering, H. S., Guzzela, L., Hepner, S. A. R., and Onder, C.

H., Time-Optimal Motions of Robots in Assembly Tasks,

IEEE Trans. On Automatic Control, Vol. 3, No. 6, June 186,

pp. 512-518.

[2] Hujic, D., Croft, E. A., Zak, G., Fenton, R. G., Mills, J. K., and

Benhabib, B., Time-Optimal Interception of Moving Objects –

An Active Prediction, Planning and Execution System,

IEEE/ASME Trans. On Mechatronics, Vol. 3, No. 3, Sept

1998, pp. 225-239.

[3] Karimi, K. and Hamilton, H.J., Learning With C4.5 in a

Situation Calculus Domain, The Twentieth SGES International

Conference on Knowledge Based Systems and Applied

Artificial Intelligence (ES2000), Cambridge, UK, December

2000, pp. 73-85.

[4] Karimi, K. and Hamilton, H.J., Logical Decision Rules:

Teaching C4.5 to Speak Prolog, Second International

Conference on Intelligent Data Engineering and Automated

Learning (IDEAL’2000), Hong Kong, December 2000, pp. 85-

90.

[5] Karimi, K., and Hamilton, H.J., Distinguishing Causal and

Acausal Temporal Relations, Seventh Pacific-Asia Conference

on Knowledge Discovery and Data Mining (PAKDD'2003),

Seoul, South Korea, April/May 2003.

[6] Lozano-Perez, T., and Wesley, M. A., An Algorithm for

Planning Collision-Free Paths among Polyhedral Obstacles,

Commun ACM, 22:560-570.

[7] Mehrandezh, M., Sela, N. M., Fenton, R. G., and Benhabib, B.,

Robotic Interception of Moving Objects using an Augmented

Ideal Proportional Navigation Guidance Technique, IEEE

Trans. On Systems, Man, and Cybernetics – Part A: Systems

and Humans, Vol. 30, No. 3, May 2000, pp. 238-250.

[8] Mehrandezh, M., and Gupta, K., Sequential Task Sharing for

Co-operating Robots in Presence of Obstacles, IEEE

International Conference on Systems, Man and Cybernetics

(SMC’2002), Tunisia, October 5-9, 2002.

