A Proposal for Including Behavior in the Process of
Object Similarity Assessment with Examplesfrom
Artificial Life

Kamran Karimi , Julia A. Johnson 2 and Howard J. Hamilton*

! Department of Computer Science
University of Regina
Regina, Saskatchewan
Canada SAS 0A2
{karim , hanm|ton}@s. uregina.ca

2 Département de mathématiques etd’ informatique
Université Laurentienne
Sudbury, Ontario
Canada P3E 2C6
julia@s. | aurentian.ca

Abstract. The similarity assessment process often involves measuring the
similarity of objects X and Y in terms of the similarity of corresponding

constituents of X and Y, possibly in a recursive manner. This approach is not

useful when the verbatim value of the dataiis of lessinterest than what they can

potentially "do,” or where the objects of interest have incomparable

representations. We consider the possibility that objects can have behavior
independent of their representation, and so two objects can look similar, but

behave differently, or look quite different and behave the same. This is of
practical use in fields such as Artificial Life and Automatic Code Generation,
where behavior is considered the ultimate determining factor. It is also useful

when comparing objects that are represented in different forms and are not

directly comparable. We propose to map behavior into data values as a
preprocessing step to Rough Set methods. These data values are then treated as

normal attributesin the similarity assessment process.

1 Introduction

Data is usually considered simply the raw material to be processed. In this view,
one receives the data, possibly from a database, looks at it, maybe modifiesit and then
returns it to a database if needed. In this view, there is a clear separation between the
code that processes the data, and the data that is being processed. However, there are
problems when "what the data can do," and not "the way they look," is of real interest.

In this paper we propose allowing objects to have behavior, and show that this
opens the door for Rough Set [7] techniques to be applied to fields such as Artificial
Life[5]. The method suggested in the paper involves representing behavior asasingle
data value or a set of data values for input to standard Rough Set methods for
classification and decision making. These are then treated as if they are constituent

parts of the objects. This preprocessing step allows us to retain compatibility with
traditional Rough Set methods.

Assessing the similarity of two data sets, also commonly referred to as objects,
without necessarily having any thing to do with the Object Orientation principles, is
an important and common operation. Classification of objects is one example of the
usefulness of measuring similarity. A concept is expressed by a set of objects that
incorporate that concept. In the presence of uncertainty, Rough Set bounds this target
set H by two sets, alower approximation H, and an upper approximation™ H such that
wehaveH I H I “H. The Rough Set theory has found many practical applications.
Similarity measures include graph measures of Semantic Relatedness [3] for
disambiguation of natural language expressions, Correlation measures [1] for
calculating the relatedness between word pairs, and Information Theoretic techniques
[2] for measuring object associations.

When using Rough Sets to assess the similarity of two objects, researchers usually
focus on the parts that make up those objects. Let x = 0o(x, %,..., %) denote an object
x constructed from sub-objectsxq, %, ..., X%. The usual approach involves computing a
function f to measure the similarity of two objectsx andy in terms of the similarity of
their components, i.e., similarity(x, y) = f(similarity(x, y1),..., similarity(x, ¥»),...,
similarity(% W)). This is a static approach. Because each part of an object can have
behavior (like a function, which has a source code, and also a run-time behavior), we
wish to include this behavior in the process too, essentially along the lines of Object
Oriented programming. Thisis adynamic approach.

The rest of this paper is organized as follows. In section 2 Artificial Lifeis briefly
introduced and the reader is told why classification methods that use the verbatim
values of an object are not of much use there. An example of when behavior is of the
ultimate importance is provided. Section 3 presents a guideline to measure behavior
and translate it to a single value, or a set of values, which can then be used by
ordinary Rough Set techniques, thus retaining compatibility with existing methods
and application software. Section 4 concludes the paper.

2 An Artificial Life Problem

Artificial Life is concerned with the study of systems that behave as if they are
alive. In most cases the systems are pieces of software, usually called creatures, that
livein an artificial environment. Each creature can be considered a plan that when
executed, affects its environment. A simulator can generate new creatures from
scratch randomly, or by applying genetic operations of mutation and crossover to
existing creatures. Rules of the environment are enforced on the creatures, and pre-
defined fithess measures are used as a guide in creating the next generation.
Thousands of generations are tried, and the creatures usually evolve to display certain
characteristics that help them survive by conforming to the rules of the environment
as much as possible. The rules determine the physics of the artificial world, and
dictate how “normal” the creatures will behave when compared to the real world.
Considering the random elements present in this process, it is no wonder that
spontaneous emergence of behavior is one of the key characteristics observed in an

Artificial Life environment. It is usually very hard to predict how the creatures will
evolve. One usual behavior isthat herds of creatures show up. Members of each herd
have a lot of resemblance to each other, and differ substantially from members of
other herds. Artificial Life techniques have been used to breed programs that perform
useful functions[4].

In this paper, behavior is defined as the side effects of interpreting data. This
interpretation is domain dependent, and can for example be the same as the execution
of code produced by an automatic code generator. The definition of behavior can be
generalized to include static data too. If there is an easily detectable relationship
between the representational format of an object and the effects of itsinterpretation in
the environment, then there is no need to interpret the object. If the data are not
interpreted, then behavior is defined astheir verbatim values.

If the simulated environment is non-trivial then there is no direct correspondence
between the source code of a creature and its behavior. The reason is that in a non-
trivial system, on one hand there is more than one way to cause the same effects, and
on the other hand executing seemingly similar, but not identical pieces of code can
have very different results. In general, a behavior measurement procedure might have
to be told to look for specific patterns of interest in certain locations of the system.
This problem is greatly reduced when moving to object oriented programming, where
global data is more contained and manageable, and completely disappears in a
functional programming environment, where global state does not exist.

Comparing behavior is of paramount importance in fields like Artificial Life. One
concrete problem is the classification of creatures produced automatically. Because
there are thousands of creatures at any time in an Artificial Life simulator, and their
behavior may change from one generation to the next, it is very difficult to do the
classification manually. One example problem is the classification of the creatures
into hunters and non-hunters. Consider an imaginary artificial world, where plant food
is created randomly by the simulator. The simulator ages the creatures at regular
intervals, which makes them weaker. When they have passed a threshold of weakness,
they die and are converted into plants. Creatures all start as peaceful vegetarians, but
after a while some may begin developing the traits associated with hunting, like
attacking others. This results in the attacked creatures becoming weaker, and thus
dying sooner. Such behavior could develop simply because it may be rewarding for
the creatures that display them: As the number of competing creatures reduces, there
is more food to eat. After awhile, they may learn that it is a good idea to hang around
weak animals. Still another trait would be to attack weaker animals and then wait,
which would probably be the most rewarding behavior.

In this example, there is no explicit hunting behavior, because all the creatures do
is eat plants. However, their behavior in the last case may very well be considered to
closely resemble that of hunters. Behaviors like attacking other creatures (which
makes them weak), waiting near old creature (because they will die in a short time),
and moving fast (to chase other creatures) are some of the condition attributes that can
be used to help in the classification of the creatures into hunters and non-hunters.
Another attribute, creature size, is of doubtful value, but can be considered if the
expert looking at the simulator thinks there is a correlation between it and hunting.
Using a Rough Set paradigm, one can come up with Table 1 for the creatures of this
artificial world. Note that there are no variables anywhere in the simulator to tell usif

a creature attacks others, or waits near old creatures, or moves fast, and the values
should be extracted from the creatures’ behavior.

Condition Attributes Decision Attribute
Attacks? Waits near old creatures? Moves fast? Creature size Hunter?
1 yes yes yes small yes
2 yes yes no small yes
3 no no yes big no
4 no yes yes small no
5 yes no yes big yes
6 no no no small no
7 no no no small no
8 no yes yes small yes

Table 1. Condition attributes used to determineif the given animals are hunters

Table 1 usesintuitive notions about how a hunter should behave. For example, it is
clear that animals 1 and 2 are smart hunters. They attack others, and wait near old
(weak) animals, which increases their chance of finding food in a short time, as old
animals die sooner. This does not necessarily mean that they hang around the same
creature that they attacked, though. Animal number 5, on the other hand, is a stupid
hunter because it does attack others, but being a fast mover, does not wait to use the
results of its efforts. Animal 4 can be compared to a vulture. It does not attack others,
but does wait near old animals. Animal 8 also acts like avulture, but is classified as a
hunter, which is counter-intuitive. This could be the result of an error on the part of
the expert who did the classification.

The above table gives the following indiscernability classes. {1}, {2}, {3}, {4, 8},
{5}, {6, 7}. Following Standard Rough Set techniques givesusH ={1, 2, 3} and"H =
{1, 2, 4,5, 8}. If we change the value of creature size for creature 8 from big to small,
then we get the following indiscernability classes: {1}, {2}, {3}, {4}, {5}, {6, 7},
{8}. Deleting the size attribute gives the original indiscernability classes. This hints
that creature size isredundant. Thisisalso intuitive, asin nature the physical size does
not determineif an animal hunts others.

3 Mapping Behavior

The usual way of comparing two objects is to directly compare the values of their
corresponding parts, and then use some statistical or heuristic function to come up
with a measure of similarity. This method is used in many applications. Using a
compatible way to measure behavior will enable us to continue to use the same
programs and methods. This can be achieved by the introduction of a mapping
function which takes interpretable data, and produces a value or a set of values. These
can then be used in the similarity assessment procedure. In general the result of
interpreting the data may depend on the global state, and the interpretation may
changethis state. More formally, we define afunction| such that:

- 10 .,a)={j ,a} wherea isadatastructure that is not interpreted and j is the
global state. The global state does not change and the return value isa itself.
1(,b) ={] ¢s} wherebisinterpretable data, and s is a measure of changes
resulting from interpreting b. j isthe starting state and j dis the resulting state.

This ensures that the same method can be applied to objects with and without
inherent behavior. It can also be applied when an object has behavior that is to be
ignored for some reason, in which case bis treated like a. Mapping behavior back to
the form of data values (@ or s) makes it unnecessary to introduce new terms and
techniques, and allows us to retain compatibility with existing methods.

1 is domain dependent and should be defined by the experts of the domain. An
example for automatic code generation in the functional programming paradigm is
that | is simply the result of executing the function kb For a neural network, |
provides theinput and allows the network to produce its output.

In Table 1, the value of a condition attribute such as "Attacks other creatures' is
obtained by afunction }1(j 1,b), with j ; being the global state of the simulator at the
time the function starts execution, and b being the representation of the creature. The
result is a possible change in the simulator (leading to the global state j ,), plus a
return value from the set { yes, no}. Similar functions (} 2, | 3, ¥4) should be used to get
the other condition attributes.

4 Conclusion

We have suggested taking a broader look at data in the similarity assessment
process. We propose allowing data to have behavior, and using this behavior to
measure the similarity of two objects. The main point to consider is that comparing
parts of an object based solely on their data values may not reveal the complete
picture. When the behavior of an object is more important than its representational
format, then the data should be interpreted and the results should be included in the
similarity assessment process. The conceptually simple technique of expressing
behavior in terms of the results of its execution allows for the easy addition of
behavior to existing similarity assessment systems. This makes it possible for
standard, well-understood methods to be applied to domains such as Artificial Life,
where systematic ways of comparison and classification are lacking.

Refer ences

1. Dent, M. and Mercer, R. E., A Comparison of Word Relatedness Measures, Pacific
Association for Computational Linguistics, pp. 270-275, 1999.

2. Jiang J. J. and Conrath, D. W., From Object Comparison to Sematic Similarity, Pacific
Association for Computational Linguistics, pp. 256-264, 1999.

3. Johnson. J. A., Semantic Relatedness, Computers & Mathematics with Applications, pp. 51-
63, 1995.

4. Koza, J. R., Genetic Programming: A Paradigm for Genetically Breeding Populations of
Computer Programs to Solve Problems, Sanford University Computer Science Department
Technical Report STAN-CS-90-1314, p.117, June 1990.

5.Levy, S, Artificial Life: A Quest for aNew Creation, Pantheon Books, 1992.

6. Marven, C. and Ewers, G., A Simple Approach to Digital Sgnal processing, John Wiley &
Sons, 1996.

7. Pawlak, Z., Rough Sets: Theoretical Aspects of Reasoning About Data, Kluwer Academic
Publications, 1991.

