
595

Divide and (Iteratively) Conquer!

Kamran Karimi, Howard J. Hamilton and Scott D. Goodwin

Department of Computer Science
University of Regina

Regina, Saskatchewan
Canada S4S 0A2

{karimi, hamilton, goodwin}@cs.uregina.ca

Abstract. The Iterative Multi-Agent (IMA) Method works by breaking down a search problem into many sub-problems,
each to be solved separately. Independent problem solving agents work on the sub-problems and use iteration to handle
any interaction between the sub-problems. Each agent knows about a subset of the whole problem and cannot solve it
all by itself. The agents, working in parallel, can use any method to solve their assigned sub-problem. The solution to
each sub-problem can affect the solutions to other sub-problems, and make them invalid or undesirable in some way, so
the agents keep checking a partial solution even if they have already worked on it. The solution to the whole problem
then emerges as a result of these local activities. This requires the problem to be decomposable into smaller ones. The
paper gives an example of constraint satisfaction problem solving. We solve randomly generated Traveling Salesman
Problems, and compare the results with those of other methods.

Keywords- search, iteration, workpool, combinatorial problem, Constraint Satisfaction Problem,
Traveling Salesman Problem.

1 Introduction

The Iterative Multi-Agent (IMA) Method is a
way of dealing with complex search problems
by decomposing them into smaller sub-
problems, and then solving them separately. The
intuition behind it is that solving many smaller
problems, possibly in parallel, will enable us to
handle harder ones. This is true especially for
combinatorial problems, where on any given
hardware platform, reducing the problem size by
a small amount may have a big effect on its
solvability. The agents only care about their
currently assigned sub-problems, and these may
not be independent. The sub-problems usually
interact with each other, and a change in one
place can invalidate the solution to another part.
This means that a change to the solution of one
sub-problem could affect the solutions to any or
all other sub-problems. This can happen in
unpredictable ways. To handle this, the agents
iterate over the solutions. Thus the same sub-
problem can be visited and solved many times.

In this paper we propose to use the Iterative
Multi-Agent (IMA) method for solving

combinatorial problems. Section 2 explains the
IMA method in general and outlines the basic
principles. Section 3 shows how a Constraint
Satisfaction Problem can be formulated for the
IMA method. Section 4 gives another example,
based on the Traveling Salesman Problem, and
presents detailed experimental results. Section 5
concludes the paper.

2 Segmenting A Complex Problem

The IMA method is a decentralized method
involving the use of multiple agents, in the form
of software processes, to solve complex search
problems. Each agent has knowledge relevant to
part of the problem, and is given responsibility for
solving one or more sub-problems. The agents do
not collaborate directly, and the final solution to
the problem emerges as a result of each agent's
local actions. Overlap is allowed in the agents'
knowledge of the problem and in their assigned
sub-problems.

Suppose a problem P can be expressed in
terms of n sub-problems, P1 to Pn, such that P =
i=1…n Pi. Each sub-problem Pi can have a finite
or infinite number of candidate solutions Si = {Si1,

596

Si2, …}, some of which may be wrong or
undesirable. Each partial solution of the whole
problem contains a candidate solution for each
sub-problem. We represent a partial solution as
an array [S1j, S2j, S3k…], where S1i is a candidate
solution to sub-problem P1, S2j is a candidate
solution to sub-problem P2, and so on.
Segmenting a bigger problem into sub-problems
makes the task of writing agents to solve the
sub-problems easier, as a smaller problem is
being attacked. As well, if a sub-problem is
present in many problems, it may be possible to
reuse an agent that solves that sub-problem.
This translates to saves in design,
implementation and debugging efforts that
would otherwise be needed for the development
of a completely new agent.

Interaction is common in complex systems
made of sub-problems. To make it more
probable that a solution can be found, a set of
partial solutions is kept. This set can be
managed as a workpool for example. The set
can be initialized by randomly generating partial
solutions, some or all of which may be wrong.
Having more than a single partial solution
matches the existence of more than one agent,
and makes a parallel search for a solution
possible. Having a set of solutions to work on
also means that we can end up with different
final solutions, possibly of different qualities.
For example, some may be elegant, but
expensive to implement, and others may be
cruder, but cheaper. These solutions can be used
for different purposes without the need to
develop them separately. This enables a two
level problem solving strategy. At the first level,
"hard requirements" are met in the final
solutions. At the second level, "soft
requirements" are considered in the process of
selecting one or more of the final solutions
produced at the first level.

The following describes how the system
works. After being assigned a sub-problem, an
agent checks one partial solution at a time to see
if it satisfies the sub-problem. If not, it tries to
create a new partial solution. The new partial
solution may be invalid for another sub-
problem, so other agents will have to look at it
later and if needed, find another solution for the
sub-problem with the invalidated solution. This
is an iterative process, because agents can

repeatedly invalidate the result of each other's
work in unpredictable ways. Each agent is
searching its own search space for solutions to its
part of the problem, in the hope of finding a place
that is compatible with all other parts. All the
agents should work on a partial solution in order
to make sure that all the sub-problems in that
partial solution are solved. This decentralized
form of activity by the agents makes it possible
for them to run in parallel, either on a
multiprocessor or on a distributed system. A
partial solution is removed from the workpool
when all the agents have looked at it and none
needed to change it, signifying that it has turned
into a total solution. They can signal this by
setting flags, and the first agent that notices that
all the flags are set can take the work out of the
pool. Any changes done by one agent results in all
flags being reset. The algorithm can stop when
one or more solutions have been found. To make
sure the program terminates, it can count the
number of times agents work on partial solutions,
and stop when it reaches a value determined by
the user. The best partial solution at that time can
then be used.

The system designer can use random methods
to divide the problem, assign sub-problems to
agents, create the initial partial solutions, and
arrange for the agents to visit the partial solutions.
Alternatively, he can choose to use deterministic
methods in any or all of these activities. But even
when everything in the system design is
deterministic, the algorithm in general does not
guarantee finding a solution. That is because
predicting the effects of the interactions between
the agents may not be possible by the designer.
There is also no guarantee of progress towards a
solution. However, if the agents operate
asynchronously, it is less probable that a specific
sequence of changes will be performed
repeatedly, which in turn makes it less probable
that the system enters a cycle. In this case, if a
global solution exists, then given enough time the
system is likely to find it.

IMA is different from methods that use genetic
operations. Genetic methods use random
perturbations followed by a selection phase to
move from one generation to the next. None of
these concepts exists in IMA. The main element
that introduces randomness into the picture is the
interaction between the agents' actions.

597

3 Solving Constraint Satisfaction
Problems

This section demonstrates how the IMA
method can be applied to a simple form of
Constraint Satisfaction Problem (CSP). It is easy
to automatically generate test CSPs, and they
are decomposable into interacting parts. Since
we want to apply the IMA method to
exponential problems, we use the backtracking
method to solve the generated CSPs.

3.1 Introduction to CSPs

In a CSP we have a set of variables V = {v1,
v2…}, each of which can take on values from a
set D = {d1, d2…} of predefined domains, and a
set C = {c1, c2…} of constraints on the values of
the variables. A constraint can involve one or
more variables. Finding the solution requires
assigning values to the variables in such a way
that all the constraints are satisfied. Sometimes
we need all such assignments, and at other times
just one is enough. It may be desirable to have
partial solutions, which are variable assignments
that satisfy some, but not all of the constraints.

The traditional way of solving a CSP is to
assign a value to one variable and then see if the
assignment violates any constraints involving
this variable and other previously instantiated
variables. If there is a violation, another value is
chosen; otherwise we go to the next unassigned
variable [4]. If we exhaust the domain of a
variable without success, then we can backtrack
to a previously instantiated variable and change
its value.

Several methods rely on multiple-agents to
solve a CSP. The Distributed Constraint
Satisfaction Problem (DCSP) is defined as in
[6]. In DCSP the variables of a CSP are divided
among different agents (one variable per agent).
Constraints are distributed among them by
associating with each agent only the constraints
related to its variable. The asynchronous
backtracking algorithm [6] allows the agents to
work in parallel. Unlike the classic backtracking
algorithm, it allows processes to run
asynchronously and in parallel. Each agent

instantiates its variable and communicates the
value to the agents that need that value to test a
constraint. They in turn evaluate it to see if it is
consistent with their own value and other values
they are aware of. Infinite processing loops are
avoided by using a priority order among the
agents. In Asynchronous weak-commitment search
[6], each variable is given some initial value, and
a consistent partial solution is constructed for a
subset of the variables. This partial solution is
extended by adding variables one by one until a
complete solution is found. Unlike the
asynchronous backtracking case, here a partial
solution is abandoned after one failure.

In [1], cooperating constraint agents with
incomplete views of the problem cooperate to
solve a problem. Agents assist each other by
exchanging information obtained during
preprocessing and as a result improve problem
solving efficiency. Each agent is a constraint-
based reasoner with a constraint engine, a
representation of the CSP, and a coordination
mechanism. This agent-oriented technique uses
the exchange of partial information rather than the
exchange or comparison of entire CSP
representations. This approach is suited to
situations where the agents are built incompatibly
by different companies or where they have private
data that should not be shared with others.

3.2 Segmenting a Constraint Satisfaction
Problem

Here each constraint is considered a sub-
problem. A variable can be shared among more
than one constraint, so there is interaction
between sub-problems. The program uses a
workpool model of parallel processing [3]. A
number of partial solutions of the problem are
created by assigning random values to each
variable. Multiple agents are then started to solve
the CSP. Each of these agents is given some
knowledge about the problem by assigning it a set
of variables and a set of constraints. There is no
need to worry about the interdependencies among
the constraints assigned to different agents. Each
agent determines the values that can be assigned
to its assigned variables. Having a constraint
entitles the agent to test its validity. Agents ignore
other variables and constraints in the problem, as
they do not need to know anything about other

598

agents' knowledge of the problem. This greatly
eases the designer's initial knowledge-
segmenting job, which can even be done
randomly. Any changes made later to an agent's
knowledge of the problem will not necessarily
result in a wave of changes in other agents. It
also does not matter if the variables in a
constraint are not assigned to the agent that has
that constraint, as other agents that are assigned
those variables will be responsible for changing
their values.

Dividing the problem among the agents
means that each one of them has to search a
smaller space to solve its portion of the problem,
and so it can run faster, or run on slower
hardware. If there are v variables and c
constraints in the problem, each agent j will
have to deal with vj � v variables and cj � c
constraints. Agents can use any method in
solving the portion of the problem assigned to
them. Each agent may have to do a complete
search of its own assigned space more than
once. This is because a given state in agent j 's
search space may not be consistent with the
current state of another agent k , while that same
state may work when agent k goes to another
location in its search space.

Each agent gets a partial solution from the
pool, tries to make it more consistent, and then
returns it to the pool. The partial solution is
accessible to only one agent while it is out of the
workpool. An agent never interacts with others
directly because all communication is done
through the workpool. This simplifies both the
design and the implementation by reducing the
amount of synchronization activity. If there is
enough work in the pool, all the agents will be
busy, ensuring that they can all run in parallel.
In a multi-processor or a multi-computer [5],
this could result in execution speed-up. Agents
can disturb other agents' work by changing the
value of a common variable, or by signaling the
need for a change in a variable. This means that
a partial solution must be repeatedly visited by
the agents.

3.3 Using the IMA Method

We wrote a program in Java to test the IMA
method in solving CSPs. [2]. The program
creates a problem by generating some variables

and a set of constraints on them. The constraints
are of the form x + y <� , where x {xl,…,xh} and y
∈{yl,…,yh}are positive integers within a specified
range, and α is a constant. It is possible to create
harder or easier problems by changing the domain
or constraint limits. Figure 1 shows one possible
set of variables and the constraints on them.

Fig. 1. The variables and constraints of an example
CSP.

One practical use for this type of constraints
is in Job-shop scheduling, where each job has a
start time start which is a variable, and a duration
duration which is a constant. The problem can be
defined as the requirement that for each pair of
jobs j and k we should have only one of startj +
durationj < startk or startk + durationk < startj. An
expert decides which one of these two constraints
is to be present in the final set of constraints. The
aim is to find suitable values for all start variables
so that all the constraints are satisfied.

After the random problem is generated, the
program creates a workpool and fills it with
random partial solutions, which are probably
inconsistent. Agents are then created as
independent Java threads and each is randomly
assigned some variables and constraints. It is
possible for some variable(s) and constraint(s) to
be assigned to more than one agent. Having a
variable enables an agent to change its value.
Having a constraint enables an agent to test it. An
agent with an assigned constraint should have
read access to the variables of that constraint. The
agents run in a cycle of getting a partial solution
from the pool, working on it, and putting it back.
After completing a cycle, the agents wait for a
small, randomly determined amount of time
before going on to the next iteration, thus making
sure that there is no fixed order in which the
partial solutions are visited. The randomness
present in the design means that the solutions will
differ from one run to the other, even when
working on the same problem. The workpool
counts the number of times it has given partial
solutions to the agents, and terminates the
program as soon as it reaches a predetermined

Variables: x0, x1, x2, x3, x4

Constraints: x3 + x2 < 10, x0 + x2 < 7, x0 + x1 < 6,
x1 + x1 < 12, x4 + x3 < 5

599

value. In general it is possible to let the agents
run indefinitely, or until all the partial solutions
are consistent. The main thread of the program
runs independently of the agents and can
automatically check all the partial solutions in
the workpool and print the inconsistencies.
Figure 2 shows two of the agents working on the
example CSP.

Fig. 2. Two agents working on the example CSP.

Figure 3 shows the workpool for the example
CSP and some of the partial solutions it
contains. The partial solutions change over time.

Fig. 3. Workpool of partial solutions for the example
CSP.

A partial solution for n variables can be
considered a vector representing a point in an n
dimensional space. Each agent has to deal with
only m < n variables. There is a "change" flag
associated with each variable, which is used by
agents to signal the need for that variable's value
to change because its current value violates a
constraint. This need is detected by an agent that
has the violated constraint, but the actual change
should be done by one of the agents that is
assigned the variable.

Each agent starts the processing by getting a
partial solution from the pool and then changing
the value of all the variables that it is assigned
and which have their "change" flag set. These
variables should change because, as detected by
other agents, their values violate some
constraints. A partial solution will thus move
from its currently unsuitable point. This is done

in the hope of finding another point that satisfies
more constraints. Agents then try to ensure that
the variables they are assigned satisfy the
constraints they are aware of. Each constraint x +
y < α can be one of three types, and what the
agent does depends on this type.

1. If both x and y are assigned to the
agent, a slightly modified version of
backtracking is used to find suitable values
for x and y. The modifications have to do with
the fact that here finding a solution is a multi-
pass process. For instance, the variables are
changed from their current values, as opposed
to a fixed starting point, thus making sure that
the whole domain is searched

2. If only one of x and y are
assigned to the agent, only the value of the
variable that is assigned to the agent is
changed, and the other variable is considered
a constant.

3. If none of x and y are assigned to
the agent, then none of them is changed.

Variables are changed by incrementing their
values, with a possible wrap-around to keep them
within the specified domains. This is to make
solving the problem harder, as a trivial solution
for this type of constraints is to simply use the
smallest values of the variables. After this phase,
each agent inspects its constraints of the second
and third types. If it finds an inconsistency, it sets
the "change" flag of the unassigned variable(s).
This is done because this agent has done all it can,
and now is signaling the failure to others. Another
agent that is assigned these inconsistent variables
will get this work later and change the values. The
agents continue like this until the workpool's
counter for the number of checked-out partial
solutions reaches the limit. At this point no more
partial solutions are given out and the agents stop
executing. The main processing loop in each
agent is shown in figure 4.

Fig. 4. The algorithm followed by each agent in the
CSP Solver

1. Get a partial solution from the pool
2. Alter my variables that have their “change” flag set by other
agents.
3. Use my constraints to find a consistent value for my variables.
4. Check the constraints with one or two missing variables; set
their “change” flag if an inconsistency is found.
5. Give the partial solution back to the pool.

Agent 1

Owned variables: x0, x2,
x3

Constraints:
x3 + x2 < 10, x0 + x1 < 6,

x1 + x1 < 12

Partial Solution 1: [1,3,4,2,2]
Partial Solution 2: [7,2,6,1,3]
Partial Solution 3: [3,7,3,1,4]

Agent 2

Owned variables: x0, x1

Constraints:
x0 + x2 < 7

600

The results of running the SCSPS.java
program to solve randomly generated CSPs are
given in [2], where we witnessed very good
scalability.

4. Solving the Traveling Salesman
Problem

In the Traveling Salesman Problem (TSP),
the aim is to find the shortest path that takes us
from a given starting city, through a number of
other cities without visiting any of them more
than once, and then back to the first city. This is
an exponential problem with a search space of
size n!. Many practical applications of TSP,
such as circuit board drilling or VLSI
fabrication must be solved for big values of n.
For such input values finding the optimal
solution is not possible, and an approximate
solution is acceptable.

4.1 Segmenting a TSP

To reduce the size of a TSP, one has to
reduce the number of cities to be visited. This
means that we will visit only m (m < n) cities. A
TSP with m cities is faster to solve, but it will
not solve the original problem with n cities. The
IMA method considers a TSP with n cities as
several smaller problems of size m.

Given a tour the n cities c1, c2, … cn, it
chooses sub-tour of length m starting at p (1 <
p � n) and ending at q such that |p - q| = m. The
value of p is determined randomly. Then it uses
a brute-force method to solve sub-problem of
finding the shortest path from cp to cq under the
constraint that the starting city, c1, is not moved.
This ensures that the solution will remain valid
for the original problem.

As an example, consider a tour of 9 cities
that starts at city A. Suppose m is 5, so each
agent considers 5 cities at a time. An agent gets
a tour from the workpool with the values shown
in figure 5, and decides to work on elements 3 to
7 (5 cities). The target for minimization are
cities E, D, F, H, and B.

A B C D F H B G I

Fig 5. The original tour

The agent then tries to find an arrangement of
these cities that results in the minimum distance
when travelling through them. Suppose the new
order is B, F, H, E, D. The resulting new tour is
then as shown in figure 6.

A C B F H E D G I

Fig 6. The modified tour

The changes done by one agent can cause the
whole tour's quality to deteriorate, that is why
other agents will look at it again and work on a
different sequence of cities.

4.2 Solving a TSP Using the IMA Method

We wrote a Java program to solve randomly
generated TSPs. It uses many of the same
techniques as in solving a CSP. It generates and
solves TSPs using a brute-force search, the
greedy, and the IMA methods. It was developed
using Java development kit 1.2.2. The test
computer was a 166MHz Pentium with 96MB of
RAM.

Random tours of the n cities are generated
with all of the tours having the same first city and
put in an array. The tours are considered circular,
so it is assumed that we return to the first city
after the last one. These are then put in a
workpool, where agents can take them out, work
on them, and put them back. There are more tours
than the agents, so on parallel hardware their
execution will overlap. Each agent uses a brute-
force method to find the shortest path between
two cities.

The distances between the cities are generated
randomly, and are represented by a two-
dimensional array. The program does not assume
anything about the world where the cities are
located, so it does not matter whether or not the
distances between them are symmetrical or
Euclidean. There is also no need for a pre-
processing phase to cluster the node using
geometric decomposition methods, as nodes are
all treated the same. The agents all run the same
code and there is no need for any load balancing
activity among them.

Each time a tour is taken out of the workpool,
only a subset of the problem is solved, with no

601

regard to the effects this may have on the whole
solution. This is another example of when
solving one sub-problem can disturb the
solutions to other sub-problems. The keyword
here is iteration. Each sub-problem is visited
many times, and over time it is hoped that the
whole tour improves.

We have compared IMA (each agent using
brute-force), with greedy and brute-force (BF)
methods. The results are shown in Table 1. The
results of the brute-force method are the best
possible. Entries in the highlighted sections
belong to the same problem.

Method Cities Agents Cities/
Agent

Iteration Length Time
(ms)

BF 10 1 10 1 181 9133
Greedy 10 1 10 1 362 91
IMA 10 5 5 40 243 350
BF 10 1 10 1 182 9434

Greedy 10 1 10 1 232 90
IMA 10 5 6 40 187 1913
BF 11 1 11 1 217 127714

Greedy 11 1 11 1 359 80
IMA 11 5 6 40 233 1102
BF 11 1 11 1 220 143446

Greedy 11 1 11 1 331 100
IMA 11 10 6 40 236 7971
BF 11 1 11 1 234 146400

Greedy 11 1 11 1 411 120
IMA 11 5 7 40 234 50192
BF 11 1 11 1 135 127454

Greedy 11 1 11 1 283 90
IMA 11 10 7 40 141 20860
BF 11 1 11 1 198 143596

Greedy 11 1 11 1 312 90
IMA 11 20 7 40 217 18357
BF 12 1 12 1 161 1385201

Greedy 12 1 12 1 282 80
IMA 12 10 7 40 175 16323
BF 12 1 12 1 160 1323226

Greedy 12 1 12 1 315 80
IMA 12 10 8 40 166 139531

Table 1. Results of solving randomly generated
TSPs.

Increasing the number of cities per agent
improves the quality of the IMA method. As in
the CSP case, IMA shows very good scalability
compared to the brute-force method. The greedy
method is very fast, but the quality of its
solutions are worse than IMA.

We tried the greedy and the IMA methods
for much larger number of cities (between 1000
and 4000). In these cases the greedy method
could beat IMA both in terms of speed and the
quality of the solutions. This shows that the
IMA method’s main use is in improving the
speed of combinatorial algorithms.

5 Conclusion

We proposed the Iterative Multi-Agent (IMA)
problem solving method that involves the
following activities: dividing the problem into
sub-problems, dividing the knowledge to solve
the sub-problems among multiple agents, and
having a set of partial solutions. Then an iterative
process starts, in which agents make changes to
the solution of each sub-problem if necessary.

We applied the IMA method to randomly
generated Traveling Salesman Problems. We saw
speed-ups when compared to a brute-force
method. It produced results with better quality
than those of greedy method. This places the IMA
method somewhere in between a combinatorial
exhaustive search and a backtrack-free greedy
method. Whether IMA is suitable for a particular
application should be determined by a domain
expert.

References

[1] P. S. Eaton and E. C. Freuder, "Agent
Cooperation Can Compensate For Agent
Ignorance In Constraint Satisfaction", AAAI-96
Workshop on Agent Modeling, August 4-8, 1996,
Portland, Oregon.
[2] K. Karimi, "The Iterative Multi-Agent Method
for Solving Complex Search Problems,"
Proceedings of the Thirteenth Canadian
Conference on Artificial Intelligence (AI'2000),
Montreal, Canada, May, 2000.
[3] J. Knopp and M. Reich, "A Workpool Model
for Parallel Computing", Proceedings of the First
International Workshop on High Level
Programming Models and Supportive
Environments (HIPS), 1996.
[4] B. A. Nadel, "Constraint satisfaction
algorithms", Computational Intelligence, No. 5,
1989.
[5] A. S. Tanenbaum, Distributed Operating
Systems, Prentice-Hall International, 1995.
[6] M. Yokoo, E. H. Durfee, T. Ishida, and K.
Kuwabara, "The Distributed Constraint
Satisfaction Problem: Formalization and
Algorithms", IEEE Transactions on Knowledge
and Data Engineering, vol. 10, No 5, 1998.

