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Abstract. In this paper we propose a solution to the problem of distinguishing 
between causal and acausal temporal sets of rules. The method, called the Temporal 
Investigation Method for Enregistered Record Sequences (TIMERS), is explained 
and introduced formally. The input to TIMERS consists of a sequence of records, 
where each record is observed at regular intervals. Sets of rules are generated from 
the input data using different window sizes and directions of time. The set of rules 
may describe an instantaneous relationship, where the decision attribute depends on 
condition attributes seen at the same time instant. We investigate the temporal 
characteristics of the system by changing the direction of time when generating 
temporal rules to see whether a set of rules is causal or acausal. The results are used 
to declare a verdict as to the nature of the system: instantaneous, causal, or acausal.  

1. Introduction 
In this paper we introduce the TIMERS method (Temporal Investigation Method for 

Enregistered Record Sequences). This method is based on a temporal order among the 
observed values of the attributes. Suitable input consists of a chronologically ordered set 
of records, where each record contains the values of the attributes, all observed at the 
same time. An example of such a record is: <x = 1, y = 2, z = 3>. These records are 
obtained at regular intervals. Here we are not concerned about the relation among 
individual attributes, such as “x and y are causes of z.” Instead, TIMERS judges a set of 
temporal rules that involves the values of x and y to predict the value of z, as being either 
causal or acausal. An example rule that could belong to this rule set is: if {(x = 1) and (y = 
2)} then (z = 3). x and y are considered to be condition attributes, while z is the decision 
attribute. We cannot tell if this rule, considered by itself, represents a causal relation or 
not, i.e., do x and y cause z to have a certain value, or do they just happen to be seen 
together, with all their values caused by some hidden variable(s)? The TimeSleuth 
software [2] implements the TIMERS method and tries to answer this question. This 
method is especially appropriate when we have access to many attributes of a system, 
because the more attributes we have, the better the chance of finding a meaningful 
relationship among them.  



 

  

A popular method for assessing the causality of a relationship is to use the concept of 
conditional independence to determine how two attributes influence each other [8]. In 
previous work, we looked at other methods of discovering causality, such as TETRAD 
[10] and CaMML [6]. One important property that differentiates the method we will 
present in this paper from these is that the presented method deals with data originating 
from the same source over time, while others deal with data generated from different 
sources with no special temporal ordering. Our previous work [3,4] was concerned with 
discovering temporal rules, with no consideration of causality and acausality. Here we 
discuss an extension to our method to aid a domain expert in making that distinction. 

The rest of the paper is organized as follows. Section 2 defines the two directions for 
time, forward and backward, describes an operation called flattening, and formally defines 
causality and acausality in the context of the TIMERS method. The distinction among 
temporal and atemporal rules is also made clear. Section 3 explains how TIMERS 
determines the nature of a set of rules. Section 4 presents the results of experiments 
performed with the TimeSleuth software using real and synthetic data sets. Section 5 
concludes the paper. 

2. Forward and Backward Directions of Time 
We consider a set of rules to define a relationship among the condition attributes and 

the decision attribute. A temporal rule is one that involves variables from times different 
than the decision attribute's time of observation. An example temporal rule is: 

If {(At time T-3: x = 2) and (At time T-1:  y > 1, x = 2)} then (At time T: x = 5).   (Rule 1). 
This rule indicates that the current value of x (at time T ) depends on the value of x, 3 

time steps ago, and also on the value of x and y, 1 time step ago. We use a preprocessing 
technique called flattening [3] to change the input data into a suitable form for extracting 
temporal rules with tools that are not based on an explicit representation of time. With 
flattening, data from consecutive time steps are put into the same record, so if in two 
consecutive time steps we have observed the values of x and y as: Time n: <x = 1, y = 2>, 
Time n + 1: <x = 3, y = 2>, then we can flatten these two records to obtain <Time T - 1: x1 
= 1, y1 = 2, Time T: x2 = 3, y2 = 2>. The "Time <number>" keywords are implied, and do 
not appear in the records. The initial temporal order of the records is lost in the flattened 
records, and time always starts from (T - w - 1) inside each flattened record, and goes on 
until T. Time T signifies the "current time" which is relative to the start of each record. 
Such a record can be used to predict the value of either x2 or y2 using the other attributes. 
Since we refrain from using any condition attribute from the current time, we modify the 
previous record by omitting either x2 or y2. 

In the previous example we used forward flattening, because the data is flattened in the 
same direction as the forward flow of time. We used the previous observations to predict 
the value of the decision attribute. The other way to flatten the data is backward 
flattening, which goes against the natural flow of time. Given the two previous example 
records, the result of a backward flattening would be < Time T: y1 = 2, Time T + 1: x2 = 3, 
y2 = 2>. Inside the record, time starts at T, and ends at (T + w - 1). This record could be 



 

  

used to predict the value of y1 based on the other attributes. x1 is omitted because it 
appears at the same time as the decision attribute y1. In the backward direction, future 
observations are used to predict the value of the decision attribute.  

Given a set of N temporally ordered observed records D = {rec1, …, recN}, the problem 
is to find a set of rules, as described in more detail below.  Each record rect = <ct1,…, ctm> 
gives the values of a set of variables V = {v1,…, vm} observed at time step t. . The forward 
window set Pf(w, t) = {dt, cki | (w ≤ t) & t-w+1 ≤ k <  t, 1 ≤ i ≤ m} represents all 
observations in the window of size w, between time (t - w +1) and time t, inclusive, where 
t is the current time. Time flows forward, in the sense that the decision attribute appears at 
the end (time t). dt is the decision attribute at time t. The backward window set Pb(w, t) = { 
dt , cki | (t ≤ |D| - w + 1) & t < k ≤ (t + w - 1), 1 ≤ i ≤ m} represents all observations in the 
window between time t and time (t + w - 1), inclusive. Time flows backward, in the sense 
that the decision attribute appears at the beginning (time t). At the time step containing the 
decision attribute, condition attributes do not appear. In other words, dt is the only variable 
at current time t. 

Formally, the flattening operator F(w, D, direction, d) takes as input a window size w, 
the input records D, a time direction direction, and the decision attribute d, and outputs 
flattened records according to the algorithm in Figure 1. 

 
for (t = 1 to |D|) 
  if ((direction = forward) and (t ≥ w)) 
     output (z = <zki | dpi ∈ Pf(w, t) & k = w-1-t+p & zki = dpi>) 
          else if ((direction = backward) and (|D| - w +1 ≥ t)) 
                         output (z = <zki | dpi ∈ Pb(w, t) & k = p - t & zki = dpi>) 

Figure 1.The flattening operation. The decision attribute d is used by the Pf() and Pb() sets. 

The flattened record contains the neighboring w records in the appropriate direction of 
time. The Fw operator renames the time index values so that in each record, time is 
measured relative to the start of that record. In each flattened record, the time index ranges 
from 0 to w-1. The flattened records are thus independent of the time variable t. 

Each rule r, generated from these flattened records, is a pair. The first member of a rule 
is a set of tests. The other member of the rule is the value that is predicted for the decision 
variable at time 0 or w-1. r = (Testsr, dval), where Testsr = { Test = (a, x, Cond) }, where a 
∈ V, x is the time in which the variable a appears, and Cond represents the condition 
under which Test succeeds. One example is: ax > 5.  dval is the value predicted for dt (the 
decision attribute at time t). The CONDITION operator yields the set of variables that 
appear in the condition side of a rule, i.e., CONDITION(r) = {ax | (a, x, Cond) ∈ Testsr}. 
Similarly, we define DECISION(r) = {d{0, w-1}}. 

There is no consensus on the definitions of terms like causality or acausality. For this 
reason, we provide our own definitions here. In previous research, we detected sets of 
temporal rules and assigned the task of whether such a relationship is causal to a domain 
expert [4]. Here we provide a way to make such distinction. Even though TIMERS 



 

  

provides an algorithmic method for making a decision through a set of metrics, a domain 
expert must still make the final decision. 
2.1 Instantaneous. An instantaneous set of rules is one in which the current value of the 
decision attribute in each rule is determined solely by the current values of the condition 
attributes in each rule [11]. An instantaneous set of rules is an atemporal one. Another 
name for an instantaneous set of rules is a (atemporal) co-occurrence, where the values of 
the decision attribute are associated with the values of the condition attributes. 

Instantaneous definition: For any rule r in rule set R, if the decision attribute d 
appears at time T, then all condition attributes should also appear at time T, i.e., 
R is instantaneous iff  (∀ r ∈ R, if dT = DECISION(r), then ∀ at ∈ CONDITION(r), t = T 
). 
2.2 Temporal. A temporal set of rules is one that involves attributes from different time 
steps. A temporal set of rules can be causal or acausal. 

Temporal definition: For any rule r in the rule set R, if the decision attribute appears 
at time T, then all condition attributes should appear at time t ≠ T, i.e., 
R is temporal iff (∀ r ∈ R, if dT = DECISION(r), then ∀ at ∈ CONDITION(r), t ≠ T ). 

We now define the two possible types of a temporal rule: 
2.2.1 Causal. In a causal set of rules, the current value of the decision attribute relies only 
on the previous values of the condition attributes in each rule [11]. 

Causal definition: For any rule r in the rule set R, if the decision attribute d appears at 
time T, then all condition attributes should appear at time t < T, i.e., 
R is causal iff  (∀ r ∈ R, if dT = DECISION(r), then ∀ at ∈ CONDITION(r), t < T ). 
2.2.2 Acausal. In an acausal set of rules, the current value of the decision attribute relies 
only on the future values of the condition attributes in each rule [7]. 

Acausal definition: For any rule r in the rule set R, if the decision attribute d appears 
at time T, then all condition attributes should appear at time t > T. i.e., 
R is acausal iff  (∀ r ∈ R, if dT = DECISION(r), then ∀ at ∈ CONDITION(r), t >T ). 

All rules in a causal rule set have the same direction of time, and there are no attributes 
from the same time as the decision attribute. This property is guaranteed simply by not 
using condition attributes from the same time step as the decision attribute, and also by 
sorting the condition attributes in an increasing temporal order, until we get to the 
decision attribute. The same property holds for acausal rule sets, where time flows 
backward in all rules till we get to the decision attribute. Complementarily, in an 
instantaneous rule set, no condition attribute from other times can ever appear. The 
TIMERS methodology guarantees that all the rules in the rule set inherit the property of 
the rule set in being causal, acausal, or instantaneous. 

3. The TIMERS Method 
The TIMERS method is based on finding classification rules to predict the value of a 

decision attribute using a number of condition attributes that may have been observed at 
different times. We extract different sets of rules to predict the value of a condition 



 

  

attribute based on different window sizes and different directions for the flow of time. The 
quality of the set of rules determines whether the window size and time direction are 
appropriate. We choose either the training accuracy or the predictive accuracy of the set of 
rules as the metric for the quality of the rules, and the appropriateness of the window size 
that was used to generate the rules. TIMERS is presented in Figure 2. 

We use ε subscripts in the comparison operators to allow TIMERS to ignore small 
differences.  We define a >ε b as: a > b + ε, and a ≥ε b as a ≥ b + ε. The value of ε is 
determined by the domain expert. 

 
     Input: A sequence of temporally ordered data records D, minimum and maximum flattening window sizes 
α and β, where α ≤ β, a minimum accuracy threshold Acth, a tolerance value ε, and a decision attribute d. The 
attribute d can be set to any of the observable attributes in the system, or the algorithm can be tried on all 
attributes in turn. 

Output: A verdict as to whether the system behaves in a instantaneous, causal or acausal manner when 
predicting the value of a specified decision attribute. 

RuleGenerator() is a function that receives input records, generates decision rules, and returns the 
training or predictive accuracy of the rules. 
 
TIMERS(D, α , β, Acth , ε, d) 

aci = RuleGenerator(D, d);  // instantaneous accuracy. window size = 1 
for (w = α  to β) 
         acfw = RuleGenerator(F(w, D, forward, d), d)    // causality  test 
         acbw = RuleGenerator(F(w, D, backward, d), d)  // acausality test 
 end for 
 
acf = max(acfα, …, acfβ)     // choose the best value 
acb = max(acbα, …, acbβ) 
 
if ((aci < Acth) ∧ (acf < Acth) ∧ (acb < Acth)) then discard results and stop. // not enough info 
 
if ((aci >ε acf) ∧  (aci >ε acb)) then verdict = "the system is instantaneous" 
else if (acf ≥ε acb) then verdict = "the system is acausal" 
else verdict = "the system is causal" 
 
if w1 = w2 and verdict ≠ "the system is instantaneous" then  
         verdict = verdict + "at window size" + w1 

 
verdict = "for attribute d, " + verdict 
return verdict. 

Figure 2. The TIMERS algorithm, performed for the decision attribute d. 

4. Experimental results. 
We use three data sets: synthetic artificial life data from a simulated world, a Louisiana 

weather database, with seven relevant condition attributes, and a Helgoland weather 
database with three relevant condition attributes. 



 

  

Series 1: The first series of experiments used data set from an artificial life program 
called URAL [13]. In a two-dimensional world, a robot moves around randomly, and 
records its current location plus the action that will take it to the next (x, y) position. It also 
records the presence of food at each location. We first set the position along the x axis as 
the decision attribute. In this world, the current x value depends on the previous x value 
and the previous movement direction, and is perfectly predictable. The results appear in 
Table 1(a). The system is not instantaneous, because a window size of 1 (current time) 
gives relatively poor results. Rather, the system is causal, because the forward test gives 
the best results. The same conclusions are obtained for the y values.  

Next we set food as the decision attribute. In this simple world, the presence of food is 
associated with its position. Because the location of the food does not change, the 
presence of food can be predicted using only the robot’s previous position at a 
neighboring location and the robot’s previous action. As shown in Table 1(b), the system 
is instantaneous, because a window size of 1 gives relatively good results. We expect 
about the same results with any other value for the window size. 

 
 Window Causality Acausality  Window Causality Acausality 

 1 46.0%  1 99.5% 
 2 100% 70.6%  2 99.3%     99.1% 
 3 100% 71.7%  3 99.3%      99.3% 
 4 100% 72.8%  4 99.3% 99.4% 
 5 100% 74.5%  5 99.4% 99.5% 
 6 100% 73.7%  6 99.4% 99.6% 
 7 100% 73.3%  7 99.4% 99.5% 
 8 100% 73.6%  8 99.5% 99.5% 
 9 100% 72.6%  9 99.3% 99.6% 

(a) 10 100% 73.9% (b) 10 99.3% 99.6% 
Table 1.URAL data.(a) Decision attribute is x. (b) Decision attribute is presence of food 

 
Series 2: The second experiment was done on a real-world data set, comprising hourly 

Louisiana weather observations [12]. The observed attributes consist of air temperature, 
amount of rain, maximum wind speed, average wind speed, wind direction, humidity, 
solar radiation, and soil temperature. We used 343 consecutive observations to predict the 
value of the soil temperature attribute. The results are given in Table 2(a). The system is 
not instantaneous, because a window size of 1 gives poor results. The system is acausal, 
since the acausality tests gives results as good as or better than those of the causality tests. 

Series 3: The next test was done on the Helgoland weather data set [1], which consists 
of hourly observations of the year, month, day, hour, air pressure, wind direction, and 
wind speed attributes. Wind speed was selected as the decision attribute. The results from 
3000 hours of consecutive observations are given in Table 2(b). With an accuracy 
threshold of 21% or higher, the data are insufficient to make a judgement.  The records are 
not rich enough to allow TimeSleuth to create rules that can reliably predict the value of 
the decision attribute. We expect that additional records would not change this. 

 



 

  

 Window Causality Acausality  Window Causality Acausality 
 1            27.7%  1            18.9% 
 2 82.7% 75.1%  2 17.7% 20.7% 
 3 86.8% 87.1%  3 14.7% 17.2% 
 4 84.4% 84.7%  4 14.2% 16.9% 
 5 86.7% 82.9%  5 13.9% 14.5% 
 6 77.5% 81.4%  6 14.0% 15.2% 
 7 79.5% 79.8%  7 13.4% 15.0% 
 8 80.7% 79.8%  8 13.2% 14.9% 
 9 77.9% 77.3%  9 12.2% 13.9% 

(a) 10 79.2% 74.0% (b) 10 12.0% 14.7% 
Table 2. (a) Louisiana data, d =  Soil temperature. (b) Helgoland data, d = Wind speed. 

5. Concluding Remarks 
We introduced the TIMERS method for distinguishing causal and acausal sets of 

temporal rules.  We implemented TIMERS in the TimeSleuth software and applied it to 
three data sets.  TimeSleuth correctly categorized two rules sets as causal and another as 
acausal for an Artificial Life data set, categorized a rule set for the Louisiana weather data 
set as acausal, and said data were insufficient to make a conclusion about the Helgoland 
dataset.  TimeSleuth is available at http://www.cs.uregina.ca/~karimi/downloads.html. 
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