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Abstract. We introduce a method for finding temporal and atemporal relations 
in nominal, causal data.  This method searches for relations among variables 
that characterize the behavior of a single system. Data are gathered from 
variables of the system, and used to discover relations among the variables. In 
general, such rules could be causal or acausal. We formally characterize the 
problem and introduce RFCT, a hybrid tool based on the C4.5 classification 
software.  By performing appropriate preprocessing and postprocessing, RFCT 
extends C4.5's domain of applicability to the unsupervised discovery of 
temporal relations among temporally ordered nominal data. 

1. Introduction 

We consider the problem of discovering relations among a set of variables that 
represent the state of a single system as time progresses.  Given a sequence of 
temporally ordered records, with or without an explicit time variable, the goal is to 
identify as many cases as possible where two or more variables' values depend on 
each other. We may want to describe the system, predict future behavior, or control 
some of the variables by changing the values of other variables. For example, a 
description might be based on the observation that (y = 5) is always true when (x = 2).  
From this description, we could predict the value of y as 5 when we see that x is 2. 
This description is an example of association between two values, where observing 
the value of one variable allows us to predict the value another variable, without one 
necessarily causing the other. Alternatively, from the description, we could devise the 
rule: if {(x = 2)} then (y = 5), and use forward chaining to predict that setting the 
value of x to 2 will result in y becoming 5.  This rule can be interpreted as a causal 
relation.  

Previous research has emphasized causality mining, time series, and event 
sequences. A causality miner attempts to generate a description of the causal relations 
in the data. TETRAD [13] and CaMML [8, 16] are two causality miners based on 
Bayesian networks [3]. The suitability of using Bayesian networks for mining 
causality is a continuing source of debate [4, 10, 15]. In [11] the author claims that it 
is possible to discover and express causality with mathematical tools, while in [2] the 



 

 

claim is that the ability to extract correct causal relations from any given set of 
observed data is doubtful.  At the least, considerable disagreement exists about the 
concept of causality.  

Interpreting association relations as causal relations, as done by applications such 
as TETRAD, requires justification. The main trend in causality mining involves using 
the statistical concept of conditional independence as a measure of the control one 
variable may have over another. For example, given the three variables x, y, and z, if x 
is independent from y given z, that is, P(x, y | z) = P(x | z),  then we can conclude that 
x is not a direct cause of y, and y is not a direct cause of x. In other words, z separates 
x and y from each other. This basic concept is used in Bayesian Networks to build 
graphs that show the conditional dependence of the variables under observation. This 
graph is then interpreted as signifying causal relations. The notion of conditional 
independence is void of time. The proponents of this mainstream method use temporal 
information, if it is available, to place constraints on the relationships among the 
variables (e.g., if we know x always appears before y, then y cannot be a cause of x), 
but time is not essential to the working of their algorithms. Leaving out time when 
dealing with the notion of causality seemed counterintuitive to us.  

In this paper, we introduce the principles of RFCT's operation. RFCT [9] is a new 
hybrid tool based on the C4.5 classification software [12]. The name RFCT is a loose 
acronym for "Rotate, Flatten, apply C4.5, and enforce Temporal constraints." By 
performing appropriate preprocessing (rotation, and flattening) and postprocessing 
(applying temporal constraints), RFCT extends C4.5's domain of applicability to the 
unsupervised discovery of temporal relations among nominal data. We chose C4.5 
because it is available in source code, and has been used widely in the literature. 

The remainder of this paper is organized as follows. Section 2 formally presents the 
problem and the notation used in this paper. Section 3 introduces the RFCT method 
and software, and Section 4 concludes the paper. 

2. Formal Representation of the Problem 

Given a set of temporally ordered observation records D = {d1, …, dT}, the 
problem is to find a set of relations, as described in more detail below.  Each record dt 
= <dt1,…, dtm> gives the values of a set of variables V = {v1,…, vm} observed at time 
step t.  Each relation predicts or constrains the value of one variable vj, 1 ≤ j ≤ m.  The 
data values are assumed to be nominal, that is, symbolic values such as "yes," or 
numeric values, such as "1," representing different categories with no ordering 
defined among the values.  It is assumed that no variable explicitly holds a time value.  
Unlike the real-world data studied by many researchers [1, 2, 14], we assume that a 
temporal order exists among the records. 

The goal is to discover relationships among the past and present values of the 
variables. Of particular interest is any relation that can be specified as a rule that 
determines the value of some variable vj at time t based on the previous or current 
values of the variables. The current value of vj may not be used to determine its own 
value.  If a rule predicts vj's value at time step t based only on the values of other 
variables observed at time step t, then the rule is an atemporal rule. Alternatively, if 
the rule is based on the value of variables from previous time steps, it is called a 



 

 

temporal rule. Since one common sense definition of a causal relation involves the 
passage of time between the cause and the effect, we arbitrarily define such rules to 
specify causal relations. By this assumption, for a rule to be causal, the variables from 
the past must be indispensable; otherwise it will turn into an atemporal rule. 

For any t, 1 ≤ t ≤ T we distinguish between the current time step t, and the previous 
time steps. We define the previous set P(t) = {dki |  1 ≤ k ≤ t, 1 ≤ i ≤ m} to represent all 
observations made from time 1 to time t.  

For practical reasons, we concentrate on a limited window of past observations. For 
any given time step t, the window includes the preceding w-1 time steps, plus the 
current time step, for a total of w time steps. We assume that only information in this 
window is relevant to predicting the value of some variable vj at time t. The window 
set Pw(t) = {dki | w ≤ t & t-w+1 ≤ k ≤  t, 1 ≤ i ≤ m} represents all observations in the 
window. 

The flattening operator Fw(t,D) takes as input a window size w, a current time t,  t ≥ 
w, and the input records D, and gives a single flattened record z = {zki | dpi ∈ Pw(t) & k 
= w-t+p & zki = dpi}. The flattened record contains the most recent w records. Given T 
input records, Fw can be applied with any t, w ≤ t ≤ T, thus turning the original T 
records into T-w+1 flattened records. Each flattened record contains mw fields.  

The Fw operator renames the time index values so that in each record, time is 
measured relative to the start of that record only.  In each flattened record, the time 
index ranges from 1 to w. The flattened records are thus independent of the time 
variable t. To create a variable corresponding to each member of a flattened record, 
we define the set Vw = {vki | 1 ≤ k ≤ w, 1 ≤ i ≤ m}. The variables in Vw correspond to w 
consecutive values of the variables in the set V. With mw members, Vw has a one to 
one correspondence with every flattened record z. 

To use tools that do not consider any temporal order to be present among the input 
records, we flatten the T records and use the new T-w+1 records as input. Each 
flattened record contains all information available in a window of w time steps.  The 
flattened records can thus be processed by a tool that ignores temporal relationships. 
Before flattening, time goes "down" to the next record, but after flattening, time 
moves horizontally within the same record, hence the name "flattening." 

We look for a relation R: S → {vj}. The only restriction is that vj ∉ S. We consider 
S to be minimal, that is, there is no S' such that S' ⊂ S and R: S' → {vj}. We define R 
to be of two different types: 

• Atemporal:  R: S → {vj}, S ⊆ V - {vj}. 
• Temporal: R: S → {vwj}, S ⊆ Vw - {vwj} & S ∩ (Vw - {vw1,…, vwm})  ≠ ∅. 
If S includes variables from only the current time step then we call R an atemporal 

relation. If S includes variables from previous time steps, then we call R a temporal 
relation. For such relations to be discovered, we assume that relations among data 
persist over time, and thus are repeatable. For the use of a time window to be justified, 
we assume that each relation is of limited duration. If we cannot prove that set S is 
minimal, then a specified temporal relation may actually be equivalent to an 
atemporal relation that can be found by eliminating unnecessary variables.  In 
addition, we require the relation to obey the temporal order by referring to the 
variables according to the order of their appearance. This is clarified in Section 3. 



 

 

3. Method 

In this section, we describe RFCT's method for finding relations among variables 
in a single system. For a practical comparison of this method with TETRAD, see [5]. 
RFCT is an unsupervised variant of C4.5, a well-known decision rule and tree 
discoverer. Another rule discoverer could be used in RFCT instead of C4.5.  

C4.5 first creates a decision tree that can be used to predict the value of one 
variable (the decision attribute) from the values of other variables (the condition 
attributes). C4.5 uses a greedy algorithm with one look-ahead step, based on 
information entropy of the condition attributes, to build a decision tree. Decision rules 
are derived from the decision tree with a program called "c4.5rules." After the rules 
have been created, the consult program in the C4.5 package can be used to execute the 
rules. It prompts for the condition attributes and then outputs the appropriate value of 
the decision attribute.  

Each decision rule generated by C4.5 is equivalent to a simple predicate, such as if 
{(a = 1) and (b = 2)} then {(class = 4)} [83.2%]. The variables a and b may be 
causing the value of class, or they may be associated with it because of some other 
reason. A certainty value, assigned to each rule, specifies the confidence of that rule. 
In the example rule just given, the certainty value is 83.2%. C4.5 has been modified to 
output its rules as Prolog statements, which can be executed by a Prolog Interpreter 
with little or no change [6, 7].  

For our research, we created a modified version of C4.5, called C4.5T, which 
ensures that each decision rule references condition attributes in temporal order, and 
adds temporal annotations to both condition and decision attributes. An implicit 
assumption in C4.5 is that all condition attributes are available at the same time. As a 
decision tree is being built, the condition attributes may be used in any order. C4.5T 
performs two additional steps (listed below).  To illustrate these steps, suppose the 
input consists of data records that contain the values of 4 variables: <a, b, c, d>, 
flattened with a time window of w = 3.  Suppose C4.5 generates the decision rule: if 
{(a = 3) and (b = 2) and (c = 6)} then (d = 8), where condition attributes a and c  are 
derived from the first unflattened record in the window, condition attribute b is 
derived from the second time step, and the decision attribute d is derived from the 
third.  The two additional steps performed by C4.5T are as follows.  
1. Reorder the arguments in the rule, so that the attributes appear in the same 

temporal order as their respective unflattened records. For example, reorder the 
rule given above as: if {(a = 2) and (c = 6) and (b = 3)} then (d = 8). 

2. Add "At Time n:" before the attributes that happen at time step n in the flattened 
record. Intuitively, this can be considered the reverse of the flattening operation. 
For example, annotate the rule given above as follows: 
if {At Time 1: (a = 2) and (c = 6) and At Time 2: (b = 3)} then At Time 3: (d = 
8). 

C4.5T has been implemented as a modification to c4.5rules, a program in the C4.5 
Release 8 package that generates rules from decision trees, to output temporal rules. 
The user can specify the number of records involved in the flattening process via a 
new option -T (Time window). The modified c4.5rules program then generates the 
rules as usual, but before outputting them, it sorts the decision attributes of each rule 
according to their time of occurrence. It then prints out the rules, along with the 



 

 

temporal information as outlined in the example given above. We have also modified 
the c4.5 program (C4.5's decision tree builder) to consider the temporal order while 
building the tree [9].  

The RFCT algorithm is introduced here.  
 
Algorithm RFCT. 
Input:  a set of m variables V; a data set D consisting of T records with m values;   
and a window size w. 
Output: a set of decision rules R. 
for j = 1 to m 

D' = rotate the values in each record d ∈ D such that value in vj is the last 
member of d. 

       Flat = the sequence of values yielded by Fw(t,D'),  for all t, w ≤ t ≤ T.  
       R = R ∪ C4.5T(Flat) 
end for 
return R 
 
Since C4.5 is a supervised algorithm, the user must specify the decision attribute. 

To avoid providing this supervision, RFCT is set to apply C4.5T to every possible 
decision attribute in turn. Alternatively, the user can choose exactly which attributes 
should be considered as decision attributes. To allow temporal relations of up to w 
steps to be discovered, preprocessing using the flattening operator with window size 
w, is applied to the input. RFCT provides the user with temporal rules as its output. 

4. Concluding Remarks 

We introduced a new unsupervised learning tool called RFCT, which is based on 
C4.5 and relies on straightforward methods to extend its abilities. It is specifically 
meant for cases where data is generated sequentially by a single source. RFCT is not 
meant to replace software such as TETRAD, as its domain of applicability is more 
restrained (temporal output from a single source vs. data generated by many sources 
with no regard to the order in which they were gathered). RFCT is written in Java and 
runs in any environment that supports the Java runtime environment and has a 
graphical user interface, including  Microsoft Windows and XWindow. The package 
includes full source code and online help, and is freely available from 
http://www.cs.uregina.ca/~karimi/downloads.html or by contacting the authors. 
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