

TimeSleuth: A Tool for Discovering Causal and Temporal Rules

Kamran Karimi and Howard J. Hamilton
Department of Computer Science

University of Regina
Regina, Saskatchewan

Canada S4S 0A2
{karimi, hamilton}@cs.uregina.ca

Abstract
Discovering causal and temporal relations in a system

is essential to understanding how it works, and to
learning to control the behaviour of the system.
TimeSleuth is a causality miner that uses association
relations as the basis for the discovery of causal and
temporal relations. It does so by introducing time into
the observed data. TimeSleuth uses C4.5 as its
association discoverer, and by using a series of pre-
processing and post-processing techniques to enable the
user to try different scenarios for mining causality. The
data to be mined should originate sequentially from a
single system. TimeSleuth's use of a standard decision
tree builder such as C4.5 puts it outside the current
mainstream method of discovering causality, which is
based on conditional independencies and causal
Bayesian Networks. This paper introduces TimeSleuth as
a tool, and describes its functionality. TimeSleuth
expands the abilities of C4.5 in some important ways. It
is an unsupervised tool that can handle and interpret
temporal data. It also helps the user in analyzing the
relationships among the attributes by enabling him/her
to see the rules, and statistics about them, in tabular
form. There is also a mechanism to distinguish between
causality and acausal relations. The user is thus
encouraged to perform experiments and discover the
nature of relationships among the data.

1. Introduction

Knowing the causal relations between the input and

output of a system allows us to predict the behaviour of
that system, and if any of the inputs can be manipulated,
then we may be able to control the system so as to have a
desired output. Causality mining has been a source of
extensive (sometimes philosophical) debate [3, 9, 16].
The question of whether we should use the term
"temporal rule" or use "causal rule" is thus subject to
discussion. We assume that what we observe in a system
is a series of attributes taking on different values over
time. Thus we only observe associations among the
values of the attributes. Whether or not a temporal
association portrays a causal or acausal relationship is

not always obvious, hence the preference of some people
to use the term "temporal rule" instead of "causal rule."
Some researchers claim that under certain conditions
causal relations can be discovered reliably [12]. The tool
introduced in this paper uses the direction of time to
distinguish between causal and acausal relations, with
causal relations assumed to flow forward in time, and
acausal relations assumed to flow backward. We define a
temporal relation to be either causal or acausal, as long
as the attributes involved in the relation appear at
different times.

Many different methods have been employed to
discover temporal rules and patterns. An event sequence
is a series of temporally ordered events, with either an
ordinal time variable (which gives the order but not a
real-valued time) or no time variable. Each event
specifies the values for a set of attributes. A pattern in an
event sequence is called a frequent episode [10].
Algorithms such as Dynamic Time Warping and its
variants measure the similarity of patterns that are
stretched differently over time [8]. These methods have
not been applied to searching for relations in causal data.

Interpreting association relations as causal relations
requires justification. The current trend in causality
mining involves using the statistical concept of
conditional independence as a measure of the control one
attribute may have over another. For example, given the
three attributes x, y, and z, if x and y are independent
given z, that is, P(x, y | z) = P(x | z), then we can
conclude that x is not a direct cause of y, and y is not a
direct cause of x. In other words, z separates x and y from
each other. This basic concept is used in Bayesian
Networks to build graphs that show the conditional
dependence of the attributes under observation. This
graph is then interpreted as signifying causal relations.
One well-known example of a system working on this
basis is TETRAD [14].

The notion of conditional independence is void of
time. The proponents of this mainstream method use
temporal relationships, if they are available, to place
constraints on the relationships among the attributes (if
we know x always appears before y, then y cannot be a
cause of x), but time is not essential to the working of

their algorithms. These statistical methods have been
used in many studies [2, 15], especially in social
sciences, where the notion of causality is subject to
debate. We tried TETRAD on a very simple domain,
with straightforward causal rules that were not subject to
interpretation and debate, and were disappointed with the
results [4, 5]. Leaving out time when dealing with the
notion of causality seemed counterintuitive to us. The
result was an investigation into the use of a standard tool,
C4.5 [13], to discover associations given temporally
ordered input data. We chose this tool because it is
available in source code, and has been used widely in the
literature.

C4.5 is a decision tree generator that also produces
classification rules. It is a supervised tool that takes as
input a series of attributes, called condition attributes,
and outputs the predicted value for a single decision
attribute. The user has to specify which attribute is to be
considered as the decision attribute. This requirement
makes the algorithm fast compared to the unsupervised
methods, because only one attribute is considered instead
of all possible relations among all the attributes. C4.5
assumes that all the attributes are observed at the same.
To go from normal associations to temporal and causal
relations, we introduce time into the input as a
preprocessing step, run C4.5, and then adjust the output
to obey the original temporal relations as a
postprocessing step. We thus use time, and not any
statistical method, to justify the interpretation of
association relations as causal ones. We have seen that
this method gives results that agree better with common
sense than statistical methods [4, 5].

 In the rest of the paper we present TimeSleuth, the
tool we have developed for the discovery of temporal
and causal rules. TimeSleuth is an enhanced version of
our RFCT software [7]. TimeSleuth is written in Java
and has a graphical user interface. It expands the abilities
of C4.5 in several important ways. It is an unsupervised
tool that can handle and interpret temporal data. It also
helps the user in analyzing the relationships by enabling
the user to see the rules, and statistics about them, in
tabular forms. For a theoretical treatment of TimeSleuth
refer to [6].

The rest of the paper is organized as follows. Section 2
explains the input to the system, and shows how we
embed temporal data in the input to C4.5 by performing
a preprocessing step. Section 2 also talks about the
postprocessing step necessary to make sure that the user
is presented with temporally valid output. Section 3
describes how TimeSleuth works, and shows how the
user-interface helps in conducting different experiments
and making sense out of the results. Section 4 concludes
the paper.

2. Preprocessing and Post-Processing

In this paper we consider a system as a black box that

takes a set of inputs and produces a set of outputs. We
observe the input and the output of the system over time,
and save the observations in records at regular intervals.
Assuming that we are observing 5 attributes, x1 to x5. We
thus end up with a temporally ordered series of records
as shown in Figure 1, where for any t > 1 and 5 > n > 1,
xtn is the nth observed attribute at time t.

<x11, x12, x13, x14, x15>
<x21, x22, x23, x24, x25>
<x31, x32, x33, x34, x35>
<x41, x42, x43, x44, x45>

Figure 1. Data produced by a system

The trend in data mining is usually to ignore the

temporal order among the records. Providing these data
to C4.5 would allow it to find relationships among the
attributes that are observed at the same time, which are
non-temporal associations among the values of attributes.
However, the simple operation of merging the
consecutive records with each other, called flattening,
will provide C4.5 with more information as the current
observations and the previous ones are seen together.
This brings the possible causes and effects together. The
flattening time window determines how many
consecutive records are to be merged together. The
window size, determined by the user, shows for how
long the past can affect the present. Guessing this
number may not be easy, but as we will see later,
TimeSleuth can explore a range of window sizes to
choose a suitable one. As an example, Figure 2 shows
the records of Figure 1 flattened with a time window of
w = 2.

<x11, x12, x13, x14, x15, x21, x22, x23, x24, x25>

time 1:causes → time 2:effects
<x21, x22, x23, x24, x25, x31, x32, x33, x34, x35>

time 2:causes → time 3:effects
<x31, x32, x33, x34, x35, x41, x42, x43, x44, x45>

time 3:causes → time 4:effects
Figure 2. Records in Figure 1, flattened with w = 2.

With the exception of the first and the last records,

each record appears twice, once as the "cause" part, and
once as the "effect" part. The exceptions are because we
cannot observe any causes for the first record or any
effects for the last record. Generally, with a time window
of w, each record appears in w different flattened records
(with the exception of the first and last w records). The
"effects" are assumed to exist only in the last time step.
Thus with a time window of w, we are assuming that the

previous w-1 records contains the causes for the values
observed in the wth record.

The preprocessing phase looses the temporal
information, because the merged records no longer
contain the original order. A non-temporal tool such as
C4.5 would thus treat all the attributes as if they were
seen at the same time. Thus in the output an attribute
from the past may appear ahead of an attribute from the
future. To make sure that temporal order is respected in
the output, TimeSleuth re-orders the attributes as needed.
This postprocessing step is meant to recover the lost
information. In particular, the rule generation part
(c4.5rules) reorders the clauses of a rule to make sure
that the attributes are encountered in temporal order. For
example, if c4.5rules generates a rule such as: IF {(x11 =
1) AND (x31 = 5) AND (x24 = 1)} THEN x35 = true,
we transform it to the following: IF {(x11 = 1) AND (x24
= 1) AND (x31 = 5)} THEN x35 = true.

This modification to produce temporal rules does not
require any changes in C4.5's algorithms in the decision
tree generator or in the rule generator. Another way to
ensure that temporal order is respected is to change the
tree generation algorithm in such a way that the decision
tree is temporally sorted, as explained in [7].

3. TimeSleuth: How it Works

In this section we introduce TimeSleuth as a tool. [4,

5] provide reports on the experiments performed with
this tool, and compare it with other causality miners,
notably TETRAD. TimeSleuth is an application program
written in Java, and thus usable anywhere a Java
interpreter is available. However, it needs two of the
C4.5 package's executable files, c4.5 and c4.5rules.
TimeSleuth is a causal rule discoverer, and mainly
ignores the decision trees created by C4.5 in the process
of generating rules. Its functionality is divided between
the TimeSleuth application and C4.5. This requires
certain modification to be done in both c4.5 and
c4.5rules sources, and then they should be compiled.
After this c4.5 and c4.5rules understand new command
line options, which are used by TimeSleuth to
communicate with them. C4.5 is available publicly in
source form, and standard patch files to make it
compatible to TimeSleuth are included with the
TimeSleuth package. However, TimeSleuth can be used,
with reduced abilities, even if C4.5 has not been patched
and recompiled. An option in TimeSleuth allows the user
to inform it of this situation, so it will not provide the
non-patched C4.5 programs with options they cannot
understand.

The TimeSleuth application provides the user with a
Graphical User Interface (GUI). Its input is the same as
that of standard C4.5, which is a set of two files: A file
with a .names extension contains the names of the

condition attributes, while the decision attribute remains
nameless. TimeSleuth calls the decision attribute simply
"originalDecision." The second file, with a .data
extension, contains the observations of the condition and
decision attributes. These are called "cases," and take the
form of rows of data that correspond in order to the
contents of the .names file. The value of the decision
attribute always comes in the last column. To measure
the predictive accuracy of the resulting decision tree or
rules, the user can provide a .test files, containing unseen
cases. A .test file has the same format as a .data file.
After C4.5 is done, it evaluates the tree or the rules,
based on the contents of the .test file, and reports the
results. All three files (names, data, test) should have the
same name, and their extension determines their type.

Figure 3 shows a snapshot of TimeSleuth's input
handling panel. After reading the input files, a list of the
discovered attributes is presented to the user. The user
selects a decision attribute by highlighting it. The user
should inform TimeSleuth about the presence of a .test
file by clicking on the appropriate checkbox.

Figure 3. TimeSleuth 's input handling panel.

The data used in Figure 3 and the following figures

contains weather observations gathered hourly. The
decision attribute, "originalDecision" in TimeSleuth, is
the Soil Temperature.

Unlike with standard C4.5, in TimeSleuth the user can
choose more than one decision attribute. In such cases,
C4.5 is invoked multiple times, each time with a
different attributed as the decision attribute. TimeSleuth
automatically generates the appropriate .data, .test, and
.names files.

The user can choose to discretize the attributes using
the "Discretization" panel in Figure 4. Two methods are
available. In Method one, the attribute's range of values,
as present in the input data file, is divided into segments

of equal length. Method 2 takes into consideration the
distribution of the values, and divides the range into
segments that contain the same number of values. This
ensures the values in a denser region of the attribute's
range are preserved. The steps taken in the discretization
process are shown in Figure 4.

Figure 4. The Discretization panel

The main assumption in TimeSleuth is that the

program is provided with the values that are snapshots:
They are observed at different time steps. However, the
user can instruct TimeSleuth to use the aggregate value
of an attribute in forming its rules. For example, the user
may decide to investigate the effect of the minimum
value of the Air Temperature during a certain time
window, as shown in Figure 5. In such a case,
TimeSleuth computes the minimum, and uses its value
instead of individual temperature values. Going back to
the example of Figure 2, choosing the aggregate function
min() on x1 would result in the record: < x12, x13, x14, x15,
x22, x23, x24, x25, min(x11, x11)>. In the actual output file,
the last attribute will be the decision attribute because
that is the format expected by C4.5. The effect of having
aggregate attributes is explained below, when we
introduce the classification panel.

Figure 5. The Aggregation panel

The actual running of C4.5 happens in the

Classification panel, as shown in Figure 6. It allows the
user to specify the location of C4.5's executable files and
other related directories. The user can also provide any
optional run-time arguments to C4.5, even though the
arguments needed for TimeSleuth's functioning will be
automatically provided. Here the user can inform
TimeSleuth that C4.5 has not been patched. The default

values provided in this panel make sure that C4.5 will
function in a backward compatible way.

Figure 6. The Classification panel.

If C4.5 is not patched, TimeSleuth can still be used to

discover causal relations, because it can perform the
flattening operation with no need for C4.5 to be patched.
However, there is a potential problem here: C4.5 does
not rely on the names of the attributes to identify them.
Rather, it uses their locations in the .data file. If
TimeSleuth simply flattens the data and copies the names
in the .names file multiple times, then in the output the
attribute's names from different time steps would be
confused. The x11, x21, x31, etc. from Section 3 are not
actually differentiated in a .names file, and all are called
x1 by C4.5. If c4.5rules has been patched, it actually
outputs temporal information in the rules. So the rule
from section 3 looks like this:

IF {At Time 1: (x1 = 1) AND At Time 2: (x4 = 1) AND
AT Time 3: (x1 = 5)} THEN At Time 3: x5 = true

This outlines the way the patched c4.5rules outputs its
results. As seen later, TimeSleuth uses a tabular form to
display the same information. If c4.5rules is unpatched,
then the user can instruct TimeSleuth to add a time index
(_t<time>) to the names it generated. So c4.5rules' output
would be temporally out of order, but still
understandable because the attributes from different time
steps are distinguishable. An example is the following
rule: IF {(x1_t1 = 1) AND (x1_t3 = 5) AND (x4_t2 = 1)}
THEN x5_t3 = true. TimeSleuth can output these rules as
Prolog statements, making them machine executable.

If aggregate attributes are present, then the output rules
will include the keyword "During Time Window" to
make it clear that the aggregate value of the specified
attribute is seen during the whole window. A rule would
look like: IF {During Time Window: x3 >= 0 AND At
Time 1: (x1 = 1) AND At Time 2: (x4 = 1) AND AT
Time 3: (x1 = 5)} THEN At Time 3: x5 = true

C4.5 is supervised, because the user has to indicate the
decision attribute, and also has to tell C4.5 exactly which
values will be taken on by the decision attribute.
TimeSleuth allows the user to specify more than one
decision attribute, and can optionally extract the values
taken on by the decision attribute from the .data file. It
outputs a warning message if the .test file contains a
value that is not seen in the .data file. These abilities turn

TimeSleuth into an unsupervised tool, as the user simply
has to run the program with minimal instructions as to
the target attribute and the values it can have.

There are two time windows in the classification panel.
The first one, called "Flattening Time Window" is as the
name implies. Its value is used to flatten the input data
for both c4.5 and c4.5rules. This value is then provided
to c4.5rules so that it can sort the output temporally.
However, this value is not provided to the tree generation
program, c4.5. So the decision tree is generated with no
regard to any time window. The value "c4.5Time
Window" is meant to affect the decision tree, as
explained in [7]. This value, if different than 1, should be
the same as the Flattening time window. The rules
generated by c45rules have a confidence level. In order
to filter the rules, a user can specify a minimum
confidence level, and only rules will higher confidence
values will be presented.

Finding a suitable window size for the data under
investigation can be a challenge. For this reason
TimeSleuth allows the user to run it in a batch mode,
wherein it tries consecutive values for the time window.
Training and testing accuracy can be employed to guide
the search. As shown in Figure 7, the user can decide to
explore all values, or stop after the accuracy has reached
a threshold, or after the accuracy has stopped improving.
The running time is determined by C4.5's speed, which
in our experiments has been good, even for fairly large
values of the window size.

Figure 7. Exploring different window sizes.

The user can perform the acausality test by choosing

the backward flow of time. If the results are better than
in the forward flow, then the relationship is acausal.

TimeSleuth's user interface provides help in making
sense of the rules and relations among different attributes
in the rules. Using the Analysis panel the user can
instruct c4.5rules to output data necessary for tabular
display of rules and the relevant statistics. This changes
C4.5's normal output from text-based to tabular.

In the analysis panel, the user can see how the selected
time window has affected the resulting rules. As shown
in Figure 8, the user can opt to see the rules laid out
according to the time steps in which the attributes
appear. This display shows how important each attribute
has been in forming the rules.

Figure 8. Temporal layout of rules.

In Figure 9, many of the condition attributes used to

determine the value of the soil temperature
(originalDecision) come from previous time steps. In
other words, the current temperature of the soil depends
on attributes measured previously. Using standard C4.5
with such data obviously would not be as revealing. As
seen in Figure 9, the previous value of soil temperature
appears in 84.3% of the rules, which supports the
common sense guess that the current temperature is
determined mostly by the corresponding observation an
hour ago.

Figure 9. Statistics about the attributes

In Figure 10, TimeSleuth shows the frequency of

attribute usage in rules that were actually fired. In other
words, the more a rule has been used (on test data or on
training data), the more important those attributes will
be. Both training and testing results are displayed. The
two values are separated by ":".

Figure 10. Frequency of attribute usage in rules

Figure 11 shows some addition information about the

rules and how they were used. The column headers are
self-explanatory.

Figure 11. Rule usage and other related data

In TimeSleuth, to determine the quality of a set of

rules and the strength of the relations among the
attributes that is implied by the rules, we use the training
or testing accuracy of the set of rule.

4. Concluding Remarks

We introduced TimeSleuth, an unsupervised, learning

tool based on C4.5 that is targeted for discovering causal
and temporal relations. We saw that discovering causal
relationships using associations is the norm in the
literature. TimeSleuth does the same, but instead of using
statistical methods it employs the common sense notion
of temporal order to go from association relationships to
temporal ones. The option to set the flow of time
backward or forward allows the user to determine the
causality or acausality of the rules. Often the exact nature
of a temporal relationship is not known. TimeSleuth
helps the user to experiment with different scenarios and
see what kind of rules are discovered when different time
window values are used. The tabular output of
information about the rules and the attributes helps the
user assimilate the discovered relations.

TimeSleuth helps the user to analyze the rules
produced by C4.5 by showing how important each
attribute is at different times in determining the value of
the decision attribute. This ability makes TimeSleuth a
data mining tool (with output suitable for a domain
expert) as well as a machine learning tool (with output
consisting of ready-to-execute rules).

TimeSleuth is freely available for download from
http://www.cs.uregina.ca/~karimi/downloads.html or by
contacting the authors. The package includes on-line
help, example files (including the weather data used in
figures in this paper), and the patch files for C4.5. Also
available on the same web address are c4.5.exe and
c4.5rules.exe, patched and compiled for Microsoft
Windows 95 and up.

References

[1] Berndt, D. J. and Clifford, J., Finding Patterns in Time
Series: A Dynamic Programming Approach, Advances in
Knowledge Discovery and Data Mining. U.M. Fayyad, G.

Piatetsky-Shapiro, P. Smyth, et al. (eds.), AAAI Press/ MIT
Press, pp. 229-248, 1996.
[2] Bowes, J., Neufeld, E., Greer, J. E. and Cooke, J., A
Comparison of Association Rule Discovery and Bayesian
Network Causal Inference Algorithms to Discover
Relationships in Discrete Data, Proceedings of the Thirteenth
Canadian Artificial Intelligence Conference (AI'2000),
Montreal, Canada, 2000, pp. 326-336.
[3] Freedman, D. and Humphreys, P., Are There Algorithms
that Discover Causal Structure?, Technical Report 514,
Department of Statistics, University of California at Berkeley,
1998.
[4] Karimi, K. and Hamilton, H.J., Finding Temporal
Relations: Causal Bayesian Networks vs. C4.5, The Twelfth
International Symposium on Methodologies for Intelligent
Systems (ISMIS'2000), Charlotte, NC, October 2000.
[5] Karimi, K. and Hamilton, H.J., Learning With C4.5 in a
Situation Calculus Domain, The Twentieth SGES International
Conference on Knowledge Based Systems and Applied
Artificial Intelligence (ES2000), Cambridge, UK, December
2000.
[6] Karimi, K. and Hamilton, H.J., Discovering Temporal
Rules from Temporally Ordered Data, The Third International
Conference on Intelligent Data Engineering and Automated
Learning (IDEAL 2002), Manchester, UK, August 2002, pp.
25-30.
[7] Karimi, K. and Hamilton, H.J., RFCT: An Association-
Based Causality Miner, The Fifteenth Canadian Conference on
Artificial Intelligence (AI'2002), Calgary, Alberta, Canada,
May 2002.
[8] Keogh, E. J. and Pazzani, M. J., Scaling up Dynamic Time
Warping for Data Mining Applications, The Sixth ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD 2000), August 2000, pp. 285-289.
[9] Korb, K. B. and Wallace, C. S., In Search of Philosopher's
Stone: Remarks on Humphreys and Freedman's Critique of
Causal Discovery, British Journal of the Philosophy of Science
48, pp. 543-553, 1997.
[10] Mannila, H., Toivonen, H. and Verkamo, A. I.,
Discovering Frequent Episodes in Sequences, Proceedings of
the First International Conference on Knowledge Discovery
and Data Mining, pp. 210-215, 1995.
[11] Nadel, B.A., Constraint Satisfaction Algorithms,
Computational Intelligence, 5, pp. 188-224, 1989.
[12] Pearl, J., Causality: Models, Reasoning, and Inference,
Cambridge University Press. 2000.
[13] Quinlan, J. R., C4.5: Programs for Machine Learning,
Morgan Kaufmann, 1993.
[14] Scheines, R., Spirtes, P., Glymour, C. and Meek, C.,
Tetrad II: Tools for Causal Modeling, Lawrence Erlbaum
Associates, Hillsdale, NJ, 1994.
[15] Silverstein, C., Brin, S., Motwani, R. and Ullman, J.,
Scalable Techniques for Mining Causal Structures,
Proceedings of the 24th VLDB Conference, pp. 594-605, New
York, 1998.
[16] Spirtes, P. and Scheines, R., Reply to Freedman, In
McKim, V. and Turner, S. (editors), Causality in Crisis,
University of Notre Dame Press, pp. 163-176, 1997.

