
 

 

 

TimeSleuth:  A Tool for Discovering Causal and Temporal Rules 
 
 

Kamran Karimi and Howard J. Hamilton 
Department of Computer Science 

University of Regina 
Regina, Saskatchewan 

Canada S4S 0A2 
{karimi, hamilton}@cs.uregina.ca 

 
 

Abstract 
Discovering causal and temporal relations in a system 

is essential to understanding how it works, and to 
learning to control the behaviour of the system. 
TimeSleuth is a causality miner that uses association 
relations as the basis for the discovery of causal and 
temporal relations. It does so by introducing time into 
the observed data. TimeSleuth uses C4.5 as its 
association discoverer, and by using a series of pre-
processing and post-processing techniques to enable the 
user to try different scenarios for mining causality. The 
data to be mined should originate sequentially from a 
single system. TimeSleuth's use of a standard decision 
tree builder such as C4.5 puts it outside the current 
mainstream method of discovering causality, which is 
based on conditional independencies and causal 
Bayesian Networks. This paper introduces TimeSleuth as 
a tool, and describes its functionality. TimeSleuth 
expands the abilities of C4.5 in some important ways. It 
is an unsupervised tool that can handle and interpret 
temporal data. It also helps the user in analyzing the 
relationships among the attributes by enabling him/her 
to see the rules, and statistics about them, in tabular 
form. There is also a mechanism to distinguish between 
causality and acausal relations. The user is thus 
encouraged to perform experiments and discover the 
nature of relationships among the data. 

 
1. Introduction 

 
Knowing the causal relations between the input and 

output of a system allows us to predict the behaviour of 
that system, and if any of the inputs can be manipulated, 
then we may be able to control the system so as to have a 
desired output. Causality mining has been a source of 
extensive (sometimes philosophical) debate [3, 9, 16]. 
The question of whether we should use the term 
"temporal rule" or use "causal rule" is thus subject to 
discussion. We assume that what we observe in a system 
is a series of attributes taking on different values over 
time. Thus we only observe associations among the 
values of the attributes. Whether or not a temporal 
association portrays a causal or acausal relationship is 

not always obvious, hence the preference of some people 
to use the term "temporal rule" instead of "causal rule." 
Some researchers claim that under certain conditions 
causal relations can be discovered reliably [12]. The tool 
introduced in this paper uses the direction of time to 
distinguish between causal and acausal relations, with 
causal relations assumed to flow forward in time, and 
acausal relations assumed to flow backward. We define a 
temporal relation to be either causal or acausal, as long 
as the attributes involved in the relation appear at 
different times. 

Many different methods have been employed to 
discover temporal rules and patterns.  An event sequence 
is a series of temporally ordered events, with either an 
ordinal time variable (which gives the order but not a 
real-valued time) or no time variable.  Each event 
specifies the values for a set of attributes. A pattern in an 
event sequence is called a frequent episode [10]. 
Algorithms such as Dynamic Time Warping and its 
variants measure the similarity of patterns that are 
stretched differently over time [8]. These methods have 
not been applied to searching for relations in causal data. 

Interpreting association relations as causal relations 
requires justification. The current trend in causality 
mining involves using the statistical concept of 
conditional independence as a measure of the control one 
attribute may have over another. For example, given the 
three attributes x, y, and z, if x and y are independent 
given z, that is, P(x, y | z) = P(x | z), then we can 
conclude that x is not a direct cause of y, and y is not a 
direct cause of x. In other words, z separates x and y from 
each other. This basic concept is used in Bayesian 
Networks to build graphs that show the conditional 
dependence of the attributes under observation. This 
graph is then interpreted as signifying causal relations. 
One well-known example of a system working on this 
basis is TETRAD [14]. 

The notion of conditional independence is void of 
time. The proponents of this mainstream method use 
temporal relationships, if they are available, to place 
constraints on the relationships among the attributes (if 
we know x always appears before y, then y cannot be a 
cause of x), but time is not essential to the working of 



 

 

their algorithms. These statistical methods have been 
used in many studies [2, 15], especially in social 
sciences, where the notion of causality is subject to 
debate. We tried TETRAD on a very simple domain, 
with straightforward causal rules that were not subject to 
interpretation and debate, and were disappointed with the 
results [4, 5]. Leaving out time when dealing with the 
notion of causality seemed counterintuitive to us. The 
result was an investigation into the use of a standard tool, 
C4.5 [13], to discover associations given temporally 
ordered input data. We chose this tool because it is 
available in source code, and has been used widely in the 
literature. 

C4.5 is a decision tree generator that also produces 
classification rules. It is a supervised tool that takes as 
input a series of attributes, called condition attributes, 
and outputs the predicted value for a single decision 
attribute. The user has to specify which attribute is to be 
considered as the decision attribute. This requirement 
makes the algorithm fast compared to the unsupervised 
methods, because only one attribute is considered instead 
of all possible relations among all the attributes. C4.5 
assumes that all the attributes are observed at the same. 
To go from normal associations to temporal and causal 
relations, we introduce time into the input as a 
preprocessing step, run C4.5, and then adjust the output 
to obey the original temporal relations as a 
postprocessing step. We thus use time, and not any 
statistical method, to justify the interpretation of 
association relations as causal ones. We have seen that 
this method gives results that agree better with common 
sense than statistical methods [4, 5]. 

 In the rest of the paper we present TimeSleuth, the 
tool we have developed for the discovery of temporal 
and causal rules. TimeSleuth is an enhanced version of 
our RFCT software [7]. TimeSleuth is written in Java 
and has a graphical user interface. It expands the abilities 
of C4.5 in several important ways. It is an unsupervised 
tool that can handle and interpret temporal data. It also 
helps the user in analyzing the relationships by enabling 
the user to see the rules, and statistics about them, in 
tabular forms.  For a theoretical treatment of TimeSleuth 
refer to [6]. 

The rest of the paper is organized as follows. Section 2 
explains the input to the system, and shows how we 
embed temporal data in the input to C4.5 by performing 
a preprocessing step. Section 2 also talks about the 
postprocessing step necessary to make sure that the user 
is presented with temporally valid output. Section 3 
describes how TimeSleuth works, and shows how the 
user-interface helps in conducting different experiments 
and making sense out of the results. Section 4 concludes 
the paper.  

 
 

2. Preprocessing and Post-Processing 
 
In this paper we consider a system as a black box that 

takes a set of inputs and produces a set of outputs. We 
observe the input and the output of the system over time, 
and save the observations in records at regular intervals. 
Assuming that we are observing 5 attributes, x1 to x5. We 
thus end up with a temporally ordered series of records 
as shown in Figure 1, where for any t > 1 and 5 > n > 1, 
xtn is the nth observed attribute at time t. 

 
<x11, x12, x13, x14, x15> 
<x21, x22, x23, x24, x25> 
<x31, x32, x33, x34, x35> 
<x41, x42, x43, x44, x45> 

Figure 1. Data produced by a system 
 
The trend in data mining is usually to ignore the 

temporal order among the records. Providing these data 
to C4.5 would allow it to find relationships among the 
attributes that are observed at the same time, which are 
non-temporal associations among the values of attributes. 
However, the simple operation of merging the 
consecutive records with each other, called flattening, 
will provide C4.5 with more information as the current 
observations and the previous ones are seen together. 
This brings the possible causes and effects together. The 
flattening time window determines how many 
consecutive records are to be merged together. The 
window size, determined by the user, shows for how 
long the past can affect the present. Guessing this 
number may not be easy, but as we will see later, 
TimeSleuth can explore a range of window sizes to 
choose a suitable one. As an example, Figure 2 shows 
the records of Figure 1 flattened with a time window of 
w = 2.  

 
<x11, x12, x13, x14, x15, x21, x22, x23, x24, x25> 

time 1:causes → time 2:effects 
<x21, x22, x23, x24, x25, x31, x32, x33, x34, x35> 

time 2:causes → time 3:effects 
<x31, x32, x33, x34, x35, x41, x42, x43, x44, x45> 

time 3:causes → time 4:effects 
Figure 2. Records in Figure 1, flattened with w = 2. 

 
With the exception of the first and the last records, 

each record appears twice, once as the "cause" part, and 
once as the "effect" part. The exceptions are because we 
cannot observe any causes for the first record or any 
effects for the last record. Generally, with a time window 
of w, each record appears in w different flattened records 
(with the exception of the first and last w records). The 
"effects" are assumed to exist only in the last time step. 
Thus with a time window of w, we are assuming that the 



 

 

previous w-1 records contains the causes for the values 
observed in the wth record. 

The preprocessing phase looses the temporal 
information, because the merged records no longer 
contain the original order. A non-temporal tool such as 
C4.5 would thus treat all the attributes as if they were 
seen at the same time. Thus in the output an attribute 
from the past may appear ahead of an attribute from the 
future. To make sure that temporal order is respected in 
the output, TimeSleuth re-orders the attributes as needed. 
This postprocessing step is meant to recover the lost 
information. In particular, the rule generation part 
(c4.5rules) reorders the clauses of a rule to make sure 
that the attributes are encountered in temporal order.  For 
example, if c4.5rules generates a rule such as: IF {(x11 = 
1) AND (x31 = 5) AND (x24 = 1)} THEN x35 = true, 
we transform it to the following:  IF {(x11 = 1) AND (x24 
= 1) AND (x31 = 5)} THEN x35 = true. 

This modification to produce temporal rules does not 
require any changes in C4.5's algorithms in the decision 
tree generator or in the rule generator. Another way to 
ensure that temporal order is respected is to change the 
tree generation algorithm in such a way that the decision 
tree is temporally sorted, as explained in [7]. 

 
3. TimeSleuth: How it Works 

 
In this section we introduce TimeSleuth as a tool. [4, 

5] provide reports on the experiments performed with 
this tool, and compare it with other causality miners, 
notably TETRAD. TimeSleuth is an application program 
written in Java, and thus usable anywhere a Java 
interpreter is available. However, it needs two of the 
C4.5 package's executable files, c4.5 and c4.5rules. 
TimeSleuth is a causal rule discoverer, and mainly 
ignores the decision trees created by C4.5 in the process 
of generating rules. Its functionality is divided between 
the TimeSleuth application and C4.5. This requires 
certain modification to be done in both c4.5 and 
c4.5rules sources, and then they should be compiled. 
After this c4.5 and c4.5rules understand new command 
line options, which are used by TimeSleuth to 
communicate with them. C4.5 is available publicly in 
source form, and standard patch files to make it 
compatible to TimeSleuth are included with the 
TimeSleuth package. However, TimeSleuth can be used, 
with reduced abilities, even if C4.5 has not been patched 
and recompiled. An option in TimeSleuth allows the user 
to inform it of this situation, so it will not provide the 
non-patched C4.5 programs with options they cannot 
understand. 

The TimeSleuth application provides the user with a 
Graphical User Interface (GUI). Its input is the same as 
that of standard C4.5, which is a set of two files: A file 
with a .names extension contains the names of the 

condition attributes, while the decision attribute remains 
nameless. TimeSleuth calls the decision attribute simply 
"originalDecision." The second file, with a .data 
extension, contains the observations of the condition and 
decision attributes. These are called "cases," and take the 
form of rows of data that correspond in order to the 
contents of the .names file. The value of the decision 
attribute always comes in the last column. To measure 
the predictive accuracy of the resulting decision tree or 
rules, the user can provide a .test files, containing unseen 
cases. A .test file has the same format as a .data file. 
After C4.5 is done, it evaluates the tree or the rules, 
based on the contents of the .test file, and reports the 
results. All three files (names, data, test) should have the 
same name, and their extension determines their type. 

Figure 3 shows a snapshot of TimeSleuth's input 
handling panel. After reading the input files, a list of the 
discovered attributes is presented to the user. The user 
selects a decision attribute by highlighting it. The user 
should inform TimeSleuth about the presence of a .test 
file by clicking on the appropriate checkbox.  

 

 
Figure 3. TimeSleuth 's input handling panel. 

 
The data used in Figure 3 and the following figures 

contains weather observations gathered hourly. The 
decision attribute, "originalDecision" in TimeSleuth, is 
the Soil Temperature.  

Unlike with standard C4.5, in TimeSleuth the user can 
choose more than one decision attribute. In such cases, 
C4.5 is invoked multiple times, each time with a 
different attributed as the decision attribute. TimeSleuth 
automatically generates the appropriate .data, .test, and 
.names files. 

The user can choose to discretize the attributes using 
the "Discretization" panel in Figure 4. Two methods are 
available. In Method one, the attribute's range of values, 
as present in the input data file, is divided into segments 



 

 

of equal length. Method 2 takes into consideration the 
distribution of the values, and divides the range into 
segments that contain the same number of values. This 
ensures the values in a denser region of the attribute's 
range are preserved. The steps taken in the discretization 
process are shown in Figure 4. 

 

 
Figure 4. The Discretization panel 

 
The main assumption in TimeSleuth is that the 

program is provided with the values that are snapshots: 
They are observed at different time steps. However, the 
user can instruct TimeSleuth to use the aggregate value 
of an attribute in forming its rules. For example, the user 
may decide to investigate the effect of the minimum 
value of the Air Temperature during a certain time 
window, as shown in Figure 5. In such a case, 
TimeSleuth computes the minimum, and uses its value 
instead of individual temperature values. Going back to 
the example of Figure 2, choosing the aggregate function 
min() on x1 would result in the record: < x12, x13, x14, x15, 
x22, x23, x24, x25,  min(x11, x11)>.  In the actual output file, 
the last attribute will be the decision attribute because 
that is the format expected by C4.5. The effect of having 
aggregate attributes is explained below, when we 
introduce the classification panel. 

 

 
Figure 5. The Aggregation panel 

 
The actual running of C4.5 happens in the 

Classification panel, as shown in Figure 6. It allows the 
user to specify the location of C4.5's executable files and 
other related directories. The user can also provide any 
optional run-time arguments to C4.5, even though the 
arguments needed for TimeSleuth's functioning will be 
automatically provided. Here the user can inform 
TimeSleuth that C4.5 has not been patched. The default 

values provided in this panel make sure that C4.5 will 
function in a backward compatible way. 

 

 
Figure 6. The Classification panel. 

 
If C4.5 is not patched, TimeSleuth can still be used to 

discover causal relations, because it can perform the 
flattening operation with no need for C4.5 to be patched. 
However, there is a potential problem here: C4.5 does 
not rely on the names of the attributes to identify them. 
Rather, it uses their locations in the .data file. If 
TimeSleuth simply flattens the data and copies the names 
in the .names file multiple times, then in the output the 
attribute's names from different time steps would be 
confused. The x11, x21, x31, etc. from Section 3 are not 
actually differentiated in a .names file, and all are called 
x1 by C4.5. If c4.5rules has been patched, it actually 
outputs temporal information in the rules. So the rule 
from section 3 looks like this: 

IF {At Time 1: (x1 = 1) AND At Time 2: (x4 = 1) AND 
AT Time 3: (x1 = 5)} THEN At Time 3: x5 = true 

This outlines the way the patched c4.5rules outputs its 
results. As seen later, TimeSleuth uses a tabular form to 
display the same information. If c4.5rules is unpatched, 
then the user can instruct TimeSleuth to add a time index 
(_t<time>) to the names it generated. So c4.5rules' output 
would be temporally out of order, but still 
understandable because the attributes from different time 
steps are distinguishable.  An example is the following 
rule: IF {(x1_t1 = 1) AND (x1_t3 = 5) AND (x4_t2 = 1)} 
THEN x5_t3 = true. TimeSleuth can output these rules as 
Prolog statements, making them machine executable. 

If aggregate attributes are present, then the output rules 
will include the keyword "During Time Window" to 
make it clear that the aggregate value of the specified 
attribute is seen during the whole window. A rule would 
look like: IF {During Time Window: x3 >= 0 AND At 
Time 1: (x1 = 1) AND At Time 2: (x4 = 1) AND AT 
Time 3: (x1 = 5)} THEN At Time 3: x5 = true 

C4.5 is supervised, because the user has to indicate the 
decision attribute, and also has to tell C4.5 exactly which 
values will be taken on by the decision attribute. 
TimeSleuth allows the user to specify more than one 
decision attribute, and can optionally extract the values 
taken on by the decision attribute from the .data file. It 
outputs a warning message if the .test file contains a 
value that is not seen in the .data file. These abilities turn 



 

 

TimeSleuth into an unsupervised tool, as the user simply 
has to run the program with minimal instructions as to 
the target attribute and the values it can have. 

There are two time windows in the classification panel. 
The first one, called "Flattening Time Window" is as the 
name implies. Its value is used to flatten the input data 
for both c4.5 and c4.5rules. This value is then provided 
to c4.5rules so that it can sort the output temporally. 
However, this value is not provided to the tree generation 
program, c4.5. So the decision tree is generated with no 
regard to any time window. The value "c4.5Time 
Window" is meant to affect the decision tree, as 
explained in [7]. This value, if different than 1, should be 
the same as the Flattening time window. The rules 
generated by c45rules have a confidence level. In order 
to filter the rules, a user can specify a minimum 
confidence level, and only rules will higher confidence 
values will be presented. 

Finding a suitable window size for the data under 
investigation can be a challenge. For this reason 
TimeSleuth allows the user to run it in a batch mode, 
wherein it tries consecutive values for the time window. 
Training and testing accuracy can be employed to guide 
the search. As shown in Figure 7, the user can decide to 
explore all values, or stop after the accuracy has reached 
a threshold, or after the accuracy has stopped improving. 
The running time is determined by C4.5's speed, which 
in our experiments has been good, even for fairly large 
values of the window size. 

 

 
Figure 7. Exploring different window sizes. 

 
The user can perform the acausality test by choosing 

the backward flow of time. If the results are better than 
in the forward flow, then the relationship is acausal.  

TimeSleuth's user interface provides help in making 
sense of the rules and relations among different attributes 
in the rules. Using the Analysis panel the user can 
instruct c4.5rules to output data necessary for tabular 
display of rules and the relevant statistics. This changes 
C4.5's normal output from text-based to tabular.   

In the analysis panel, the user can see how the selected 
time window has affected the resulting rules. As shown 
in Figure 8, the user can opt to see the rules laid out 
according to the time steps in which the attributes 
appear. This display shows how important each attribute 
has been in forming the rules. 

 
Figure 8.  Temporal layout of rules. 

 
In Figure 9, many of the condition attributes used to 

determine the value of the soil temperature 
(originalDecision) come from previous time steps. In 
other words, the current temperature of the soil depends 
on attributes measured previously. Using standard C4.5 
with such data obviously would not be as revealing. As 
seen in Figure 9, the previous value of soil temperature 
appears in 84.3% of the rules, which supports the 
common sense guess that the current temperature is 
determined mostly by the corresponding observation an 
hour ago. 

 

 
Figure 9.  Statistics about the attributes 

 
In Figure 10, TimeSleuth shows the frequency of 

attribute usage in rules that were actually fired. In other 
words, the more a rule has been used (on test data or on 
training data), the more important those attributes will 
be.  Both training and testing results are displayed. The 
two values are separated by ":". 

 

 
Figure 10.  Frequency of attribute usage in rules 

 
Figure 11 shows some addition information about the 

rules and how they were used. The column headers are 
self-explanatory. 



 

 

 
Figure 11. Rule usage and other related data 

 
In TimeSleuth, to determine the quality of a set of 

rules and the strength of the relations among the 
attributes that is implied by the rules, we use the training 
or testing accuracy of the set of rule. 

 
4. Concluding Remarks 

 
We introduced TimeSleuth, an unsupervised, learning 

tool based on C4.5 that is targeted for discovering causal 
and temporal relations. We saw that discovering causal 
relationships using associations is the norm in the 
literature. TimeSleuth does the same, but instead of using 
statistical methods it employs the common sense notion 
of temporal order to go from association relationships to 
temporal ones. The option to set the flow of time 
backward or forward allows the user to determine the 
causality or acausality of the rules. Often the exact nature 
of a temporal relationship is not known. TimeSleuth 
helps the user to experiment with different scenarios and 
see what kind of rules are discovered when different time 
window values are used. The tabular output of 
information about the rules and the attributes helps the 
user assimilate the discovered relations.  

TimeSleuth helps the user to analyze the rules 
produced by C4.5 by showing how important each 
attribute is at different times in determining the value of 
the decision attribute. This ability makes TimeSleuth a 
data mining tool (with output suitable for a domain 
expert) as well as a machine learning tool (with output 
consisting of ready-to-execute rules). 

TimeSleuth is freely available for download from 
http://www.cs.uregina.ca/~karimi/downloads.html or by 
contacting the authors. The package includes on-line 
help, example files (including the weather data used in 
figures in this paper), and the patch files for C4.5. Also 
available on the same web address are c4.5.exe and 
c4.5rules.exe, patched and compiled for Microsoft 
Windows 95 and up.  
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