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Abstract. Generating decision rule sets from observationafa dis an
established branch of machine learning. Althougihsules may be well-suited
to machine execution, a human being may have prablaterpreting them.
Making inferences about the dependencies of a numwbattributes on each
other by looking at the rules is hard, hence thedrte summarize and visualize
a rule set. In this paper we propose using depeeddiagrams as a means of
illustrating the amount of influence each attribtes on others. Such
information is useful in both causal and non-causamtexts. We provide
examples of dependence diagrams using rules exdtrfitm two datasets.

1 Introduction

In a system exposed as a humber of variables that elvahge over time, exploring
the possible influence of some variables on others igritapt. Dependence of one
variable on a second variable may denote an assatiatia causal relation. In the
case of an association, we can expect a change iralihe of the first variable when
we observe a change in the second one, though wetcemmtrol this process. In the
causal case, we can possibly control the value ofitbeviariable by changing the
value of the second variable.

Much work has been done in extracting sets of rules dpply to the exposed
variables of a system. The rules in such rule sets mayerous and complicated,
making it hard for a human to understand the depeneenepresented by these rules.
In this paper we introduce dependence diagrams asyatovhelp a user visually
summarize a rule set by displaying the variables’ erfe on each other.

In a rule, such as {if x_ 1 =5 and a_1 = Move_Righén x_2 = 6} (Rule 1), the
variables x_1 and a_1 are called tandition attributes while the variable x_2,
whose value is being determined, is calleddeeision attributeln this rule, x_1 and
a_1 are used to predict the value of x_2. @heuracyof such a rule denotes how
often the prediction is correct when applied to t@sta. Such a rule specifies a
classification, and this format is widely used to esent decision rules in software
such as C4.5 [9].



Existing representations and tools used for analyziteysets are inadequate to give
a user a quick sense of the dependencies among varialidecision tables [6]
represent a decision space in textual form, but tfeyot provide visualization or
support for summarizing multiple rules or rule seteciBion trees [9] can be
displayed in a visual form helpful to understanding thfluences of the condition
attributes on a single decision attribute, but they rdi show the complex
interdependencies among variables when several cardied as decision attributes.
Decision trees can also be very big, making it harassess the importance of a given
attribute in the decision making process.

Software tools such as MineSet [2] and CART [1] eedbk user to see decision
rules in a variety of formats, but the summarizatioopprty is lacking. The General
Logic Diagram (GLD) [7] uses a two-dimensional grid tepresent a multi-
dimensional decision space. It is similar to a Karnaogp, but it can represent
multi-valued discrete attributes.  Although this esmmtation is effective for
visualizing all the rules, it is not well suited &presenting the amount of influence of
the attributes. A new representation is required stiows us to see the inter-relation
and influence among the different attributes, anthatsame time is independent of
the number of generated rules. Focusing on summanigasuch a representation
should not depend on individual rules. Its complezityl size should depend on the
number of variables rather than the number of thesru

Informally, in the context of a given number of dfites and a set of decision rules
generated based on those attributete@endence diagrais a graphic representation
that shows the amount of influence of the conditaitributes on the decision
attribute. When we change the decision attribut generate a new set of decision
rules, the same dependence diagram can be used tdtghossults. So a dependence
diagram can describe multiple rule sets, each withffareint decision attribute, as
long the same attributes are involved. To providevgtes of dependence diagrams,
in this paper we use a synthesized database and weatiler database. For both
these datasets, we show how dependence diagrams oaadt summarize the role
of the condition attributes in determining the dexisattributes’ value.

Normally, in a given rule set, the decision attribatel the condition attributes are
assumed to have been observed at the same time, sdstheraotion of the passage
of time between observing the attributes. Dependatiagrams can show such
atemporal (or instantaneousrelationships. However, they can also be of paldic
interest in understanding potentially causal rulegrecept that is explained next.

Temporal and atemporal rules can be discovered frajuesgial data using the
TimeSleuth software [3]. Assuming that time may haesspd between the
observations of variables allows interesting possigsliin analysing the data, and can
lead to the generation ¢émporaldecision rules Temporal decision rules that allow
prediction of the future events using only past eveare potential candidates for
causal rules and are callpecausal rules Such rules can be further evaluated by a
domain expert to determine whether they represeniabcausal rules. Crucially,
dependence diagrams can aid in visualizing depengieacnong attributes to aid the
domain expert in evaluating the potential causalitthese dependencies.

TimeSleuth can combine a number of sequential inptrds into one merged
record. To uncover potentially causal rules, TimeSleetamines the effects of a
condition attribute, from previous time steps, on deeision attribute. Similarly, to



identify acausal(i.e., not causal, but still temporal) rules, it exaes the effects of
condition attributes on a decision attribute in avjunes time step. If previous values
can beretrodicted (predicted in reverse), the relationship is assumeduktacausal.
The number of consecutive records merged togethetaesntieed by avindow size
Suppose at each time step we register the currertigmosf an object along the x-
axis, and also the direction of the movement thditlve attempted during the next
time step (left or right). So the effect of the atpged movement can be discovered in
the next time step. Rule 1, for example, has beemugerl by merging two
consecutive records in such an environment. x_laafddcan be read as the previous
position and movement directions, while x_2 can lagl s the current location.

We can compare a dependence diagram to a causasi8ayetwork [8] for the
task of displaying causal rule sets. Both displaysakinfluences, but they employ
different methods to derive their corresponding graphs, their interpretations are
different. In a Bayesian network, one can travefts® dgraph transitively from a
grandparent to a parent and then a child nodesarah, while one cannot traverse a
dependence diagram.The rest of the paper is orghraze follows. Section 2
introduces dependence diagrams first via an exampmlettean formally. Section 3
discusses pruning dependence diagrams. In Section 4 esenprexamples of
dependence diagrams from two data sets. Section 5 desdiue paper.

2 Dependence Diagrams

As previously mentioned, a dependence diagram summanizdtiple sets of
decision rules in a compact manner and shows the améunflience that each
condition attribute has on the decision attributeslues The diagram is not
equivalent to a set of decision rules, as the aiginle sets cannot be extracted from
a dependence diagram. Each attribute in a depeaddiagram can be a decision
attribute as well as a condition attribute.

In a dependence diagram, attributes are denoteddesin a graph and connected
together. The strength of the connection (the weajhthe edge) depends on how
often they are used in predicting each other's \wluy definition, a decision
attributed depends oranother (condition) attribute if attribute ¢; appears in rules
that are used to predict attribut A dependence diagram can summarize
instantaneous, acausal, or possibly causal rule setdjreedda [4, 5].

Before presenting a formal definition, we first pravidn example of a dependence
diagram. In Figure 1, a dependence diagram for ¢eahplata from a simulated robot
is shown. The data comes from a simulated robot doirgndom walk in a two-
dimensional space, whereandy denote the positiorg is the random action taken
(the direction of movement), arfdshows the presence or absence of food at the
robot’'s location. The data represent repeated ob#mmgaof the robot's state,
consecutively ordered by time.

Figure 1 shows that we can determine the valuerefiably (accuracy of 100% as
indicated in the node corresponding<gdrom the values of anda. In particular, the
previous values of anda, namelyx _; (read:x at timet-1, or the previous time step)
anda;_ 1, are used in all the rules that predict the cuvahte ofx, namelyx;, (read:x



at time steq, or the current time). This is shown by links frondasx anda to node

x having a weight of 100%. The times of occurrermetlie attributes are not shown
in a dependence diagram. Figure 1 also shows thatatbe wfa can be determined
with an accuracy of 47% by using the valueg,of, y, andf attributes. The value @f
depends mostly or andy (x appears in 80% of the rules, whyl@ppears in 76% of
the rules), somewhat an (which appears in 64% of the rules), and to a lessnd
on f (40% of the rules). A low accuracy value or linleight can suggest that a
relationship does not exist or that insufficient evide is available. For example,
several links have 0% weight. Such relationships egprbned from the diagram.

0%
64%

40% f:

100%
Fig. 1. A dependence diagram for the robot data

We now formally define a dependence diagram. Fgrrale setR that predicts the
value of attributed, if condition attributec; appears in at least one ruleRnthend
depends ort.. This type of dependence is callsthtic dependencebecause it is
determined by the static form of the rule set, as sppdo the run-time or dynamic
behaviour of the rule set.

Definition 1: If r O Randc; 00 CONDITIONS(), thend = DECISION¢) depends
onc.

Ignoring the time indexes, the percentage of rulesrime seR in which attributec;
appears determines the strength of dependeraterot;.

Definition 2: StaticDependence Strengthd statically depends og with strength
s% with respect to a rule sBt written asDy(c;) = s%, if ¢, appears irs% of the rules
inR.



In ruler, d statically depends oy with strengths% at time step if ¢; appears irs%
of the rules at time stepwritten asDq ().

For a temporal rule computed using a window sizev of 0, we calculat®q(c) as
follows:

Dq(c) = Dga(Ci), ifw=1orw=2
D4 (c) = max0qa(C), ... Dgwi(C)), otherwise.

Example: Let the set of condition attributes ek, ¢} and the decision attribute be
d. Suppose the window size is 3 and the ruldRsgintains 2 rules: {[If at Time 1a(
=1) And at Time 2:4 = 1) and § = 2), Then at Time 3d(= true)], [If at Timel: 4 =
3) Then at Time 3:d = false>)]}. HereDy(a) = 100% & appears in both rules) and
Dgy(b) = 50% b appears in half of the rules).

From the previous example, we hdbg;(a) = 100%,Dy,(a) = 50%,Dgq1(b) = 0%,
Dq2(b) = 50%.

Dynamic dependence is similar to static dependeexegpt the strength of the
dependence is determined according to the rulesthaally get used for determining
the value of the decision attribute. In other womisly the rules that get fired by the
test dataset are considered for determining the strarfighe edges in the dependence
diagram.

Definiton 3: Dynamic Dependence Strengtth: dynamically depends oq with
strengths% with respect to rule s&® and data set, written asDDy(c) = %, if ¢;
appears irs% of the rules that are fired when rule Bas applied to data s&t

In the previous example, suppose only the first rsiléréd. In this case we have:
DDy (a) = 100%,DDgy(b) = 100%,DDq4(a) = 100%,DDy,(a) = 0%, DDg1(b) = 0%,
andDDyy(b) = 100%.

We use a threshold value to prune weak and accidégp@andencies.

Definition 4: Threshold Dependence and Independeces dependenton ¢ if
Dq4(c) > €, wheree is a user-specified threshold. Otherwidés independenof c;.

Definition 5: Dependence Diagram: Aependence diagrans a possibly cyclic,
directed, weighted graph N L>, whereN is a set of nodes, each representing an
attribute, and. is a set of directed links, each representing therdigee strength of
a decision attribute on a condition attribute. Thedaion of the link is from the
condition attribute to the decision attribute. Adeorepresents a decision attribute
with respect to the links pointing to it, and a caiodi attribute with respect to the
links pointing away from it.

In a static dependence diagram, weights are assignibe finks but not the nodes.
No weights are assigned to nodes because the rulestaxeron any data set and so
no accuracy values are available. In a dynamic digee diagram, weights are
assigned to both the nodes and the links. The weifght node is the training or
testing accuracy of the rules created for predicting decision attribute that is
represented by the node.

To create a dependence diagram, the rule sets fdicping the values of one or
more decision attributes are first generated fromragnihg data set. A static
dependence diagram can be drawn directly from the sats, but for a dynamic
dependence diagram, each rule set must be evaloatedselected dataset. For a
given rule set, only one static dependence diagram ke derived, but multiple
dynamic dependence diagrams can be derived by iitatige test data set.



If all rules in a rule set get executed, then thécstand dynamic link strengths will
be the same. This case holds in Figure 1, where tlghtseon the links show the
static (and dynamic) strengths, while the weight$efrtodes show the results from a
particular run.

Transitivity does not apply to dependence diagraaplgs, because by definition
only the immediate links to and from a node are rimgginl. Thus, dependence
diagrams cannot be traversed. This characteristic setdefpendence diagram apart
from many other types of graph.

3 Pruning Dependence Diagrams

If the user of a dependence diagram is not interésteddes or links that have low
weight, the diagram can be pruned. Pruning caneofopned at two levels, using a
link pruning threshold and a node pruning threshatdhe link level, a link is pruned
if it does not have enough strength, or in otherdsprenough importance, in
determining the value of a decision attribute. Atloele level, a node is pruned if its
weight is too low, or in other words if it cannot pedicted accurately enough. Node-
level pruning is only possible with dynamic dependediagrams.

Each link in the dependence diagram has an assoaciatigiht that represents the
static or dynamic dependence strength of a decidtdbwde on a condition attribute,
as determined by the number of times the attribute Ipgeased in the rules
predicting the decision attribute. lmk oriented pruninglinks that have a weight
below the link pruning threshold are removed.

In node oriented pruninghe nodes are examined one by one. Each node ratgese
an attribute. Associated with each node is a weigitesenting the training or testing
accuracy for that attribute when it was used as #ogstbn attribute. Any node with a
weight below the node pruning threshold is prunekksmthere are links that point
away from that node to other nodes. In other waadspde that is used is classifying
another attribute is not removed. All links thatrofo a pruned node are also
pruned, regardless of their strength.

It is important to note that link-level pruning must performed before node-level
pruning. A node with a low accuracy denotes a damtisattribute with low
predictability, but the same attribute may be imaattin predicting the value of
another decision attribute. The examples providedt latthe text will make this point
clear.

Link- and node-level pruning allow the user to chotss amount of detail in a
dependence diagram. The user can thus concentnateoce influential attributes.
This ability is important because the attributes idaga set may not all have equal
importance, and when selecting the attributes torcein the data set, one may have
chosen irrelevant attributes because of a lack oibai pnowledge.



4 Examples of Dependence Diagrams

In this section, we show dependence diagrams for éwpdral datasets. The first
dataset is from a discrete event simulator called URIAL, where known atemporal
and temporal rules govern an artificial environmerite Becond dataset is from a
weather station in Louisiana AgriClimatic InformatioSystem [10]. We used
TimeSleuth to generate rules from the datasets amd dbestructed a variety of
dependence diagrams.

4.1 Data domains

The URAL dataset is a synthetic dataset derived ftonsecutive observations of a
artificial robot moving in a simulated world. The rbis a rectangular, 8 8 board.
The robot performs a random walk in the domain: ahdane-step, it randomly
decides on one of the following actioasleft (L), right (R), up (U), or down (D).
Left and right correspond to moving along thexis and up and down to moving
along they-axis. We used 2500 records for training, and 500tdsting the rules
(predictive accuracy). When predicting the attrébt we expect that a rule set
derived using a window size of 1 will not containtiigaccurate rules. The reason is
that, based on our understanding of the domain,uhemt value ok depends on the
previous value o%, and the previous direction of movement. The saniéstory. So
we expect that a rule set derived from a window siz2, called the p-causal rule set,
will contain highly accurate rules.

The second example, the Louisiana weather datasatrésl-world dataset from
weather observations in Louisiana. It contains obsemnstof 8 environmental
attributes gathered hourly from 22/7/2001 to 6/8/200tere are 343 training records,
each with the air temperature, the soil temperatbeamidity, wind speed and
direction and solar radiation, gathered hourly.o88er records were used for testing
the rules and generating predictive accuracy valBiege this dataset describes real
phenomena, interpreting the dependencies and medaijas in it is harder than for the
robot dataset.

It should be emphasized that although both these sktw are from temporal
domains, a dependence diagram can be generated fisogiv@n data set. For a non-
temporal dataset, we refrain from mentioning causalit acausality, but we can
interpret the links in a dependence diagram as asgmdat

4.2 The dependence diagrams

Suppose a user wants a dynamic dependence diagraine fdomain of the artificial
robot. To generate such a dependence diagram, #wefiost creates a data set
containing observations of the values of the fotnitaites. The user then generates
four p-causal rule sets with a window size of 2, eadth wne of the available
attributes set as the decision attribute. The reswts lie used to generate the
dependence diagram shown in Figure 1.



The user may decide to prune any link with strengtbvib®0% and any unneeded
node with accuracy below 50%. In this case, 120646 links are removed, but none
of the four nodes are removed. The results are sliowigure 2. Notice that the node
corresponding t@ is not pruned (even though its accuracy is belowtlineshold),
because it is an important participant in determitirggvalues ok andy.

From the diagram, we can see that the valua oén be predicted with 100%
accuracy using previous valuesafndx, and the value of can be predicted with
100% accuracy from the previous values@ndy. The values o& andf cannot be
predicted with sufficient accuracy to meet the caists.

99%

100%

Fig. 2. The pruned dependence diagram for the robot data

The choice of appropriate threshold values dependseodomain and is left to the
domain expert. A domain expert can observe the velatrengths and choose to
allow only certain links to remain. Various threshaelalues can be tried to obtain
different pruned dependence diagrams.

We can observe the influence of the attributes arh edher in the dependence
diagram shown in Figure 2. If a link exists from a @ad itself, then the value of the
corresponding attribute at a different time (prengdor succeeding) is used for
predicting the present value. A node can only painitself if the window size is
bigger than 1.

If a rule set is derived from a p-causal investigatioth TimeSleuth, the links in
either static or dynamic dependence diagrams foruleeset may be examined by a
domain expert to see if the dependencies they refreseld be causal. These links
are based on potentially causal relationships. Mewaef the rule set is derived from
an instantaneous or acausal investigation, the preseiha link in a dependence



diagram is unrelated to the existence of causality.tHis case, none of the
dependencies are suggested as p-causal.

Considering the second dataset, suppose the user igstetérin a dynamic
dependence diagram for the weather dataset, whersttength of every link is at
least 40% and the strength of every node (unlesswiteneeded) is at least 50% for
a p-causal investigation with window size 2. As witle tlobot data, the user first
constructs the diagram with all nodes and links. Figuighows the diagram after
pruning the links by removing any link with strendgiss than 40%.

Solar Rad:

Max Wind
Spd: 399

0
88% 94%

Air Temp:
87%

Avg Wind
Spd: 619

Wind
Dir: 45%

Soil Temp:
67%

Rain:
100%

Humidity:

100%

Fig. 3. Dynamic dependence diagram for the weather data

Finally, we prune unneeded nodes with accuraciesthess 50%. The results are
given in Figure 4. The dynamic dependence diagramignre 4 displays how the
values of the attribute are related to each otRer. example, the value of Soail
Temperature is highly dependent on its own previalsevand somewhat dependent
on Air Temperature.



Solar Rad:
76%

Avg Wind
Spd: 619

Air Temp:
87% 42% Rain:
100%

Soil Temp:
67%

Humidity:
67.8%

A

46%

100% 100%

Fig. 4. The pruned dynamic dependence diagram for theheedata.

5 Concluding Remarks and Future Work

Making sense of the relations implied in a rule sebiseasy because of the textual
representation of such rules. We introduced dependdiamrams as a way of
summarizing the relationships among a number of vasallhey provide a visual
aid for understanding the amount of influence o Hitributes on each other. We
provided examples of dependence diagrams that deselé#ons in synthetic and
real datasets. A dependence diagram can summarize nianygets generated from
the same dataset, each with a different decisionbatri The complexity of a
dependence diagram depends on the number of atfribatfeer than the number of
generated rules.

Dependence diagrams have not yet been integratedimeSleuth, so they have to
be derived manually. Automating their generation Mallow the user to prune the
diagram using different threshold values in real-tirmad notice important
relationships more easily.
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