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Abstract.  Generating decision rule sets from observational data is an 
established branch of machine learning. Although such rules may be well-suited 
to machine execution, a human being may have problems interpreting them. 
Making inferences about the dependencies of a number of attributes on each 
other by looking at the rules is hard, hence the need to summarize and visualize 
a rule set. In this paper we propose using dependence diagrams as a means of 
illustrating the amount of influence each attribute has on others. Such 
information is useful in both causal and non-causal contexts. We provide 
examples of dependence diagrams using rules extracted from two datasets. 

1  Introduction 

In a system exposed as a number of variables that change value over time, exploring 
the possible influence of some variables on others is important. Dependence of one 
variable on a second variable may denote an association or a causal relation. In the 
case of an association, we can expect a change in the value of the first variable when 
we observe a change in the second one, though we cannot control this process. In the 
causal case, we can possibly control the value of the first variable by changing the 
value of the second variable.  

Much work has been done in extracting sets of rules that apply to the exposed 
variables of a system. The rules in such rule sets may be numerous and complicated, 
making it hard for a human to understand the dependencies represented by these rules. 
In this paper we introduce dependence diagrams as a way to help a user visually 
summarize a rule set by displaying the variables’ influence on each other. 

In a rule, such as {if x_1 = 5 and a_1 = Move_Right, then x_2 = 6} (Rule 1), the 
variables x_1 and a_1 are called the condition attributes, while the variable x_2, 
whose value is being determined, is called the decision attribute. In this rule, x_1 and 
a_1 are used to predict the value of x_2. The accuracy of such a rule denotes how 
often the prediction is correct when applied to test data. Such a rule specifies a 
classification, and this format is widely used to represent decision rules in software 
such as C4.5 [9].  



Existing representations and tools used for analyzing rule sets are inadequate to give 
a user a quick sense of the dependencies among variables.  Decision tables [6] 
represent a decision space in textual form, but they do not provide visualization or 
support for summarizing multiple rules or rule sets. Decision trees [9] can be 
displayed in a visual form helpful to understanding the influences of the condition 
attributes on a single decision attribute, but they do not show the complex 
interdependencies among variables when several can be treated as decision attributes. 
Decision trees can also be very big, making it hard to assess the importance of a given 
attribute in the decision making process.  

Software tools such as MineSet [2] and CART [1] enable the user to see decision 
rules in a variety of formats, but the summarization property is lacking. The General 
Logic Diagram (GLD) [7] uses a two-dimensional grid to represent a multi-
dimensional decision space. It is similar to a Karnaugh map, but it can represent 
multi-valued discrete attributes.  Although this representation is effective for 
visualizing all the rules, it is not well suited to representing the amount of influence of 
the attributes.  A new representation is required that allows us to see the inter-relation 
and influence among the different attributes, and at the same time is independent of 
the number of generated rules. Focusing on summarization, such a representation 
should not depend on individual rules. Its complexity and size should depend on the 
number of variables rather than the number of the rules. 

Informally, in the context of a given number of attributes and a set of decision rules 
generated based on those attributes, a dependence diagram is a graphic representation 
that shows the amount of influence of the condition attributes on the decision 
attribute. When we change the decision attribute and generate a new set of decision 
rules, the same dependence diagram can be used to show the results. So a dependence 
diagram can describe multiple rule sets, each with a different decision attribute, as 
long the same attributes are involved. To provide examples of dependence diagrams, 
in this paper we use a synthesized database and a real weather database. For both 
these datasets, we show how dependence diagrams can be used to summarize the role 
of the condition attributes in determining the decision attributes’ value. 

Normally, in a given rule set, the decision attribute and the condition attributes are 
assumed to have been observed at the same time, so there is no notion of the passage 
of time between observing the attributes. Dependence diagrams can show such 
atemporal (or instantaneous) relationships. However, they can also be of particular 
interest in understanding potentially causal rules, a concept that is explained next.   

Temporal and atemporal rules can be discovered from sequential data using the 
TimeSleuth software [3].   Assuming that time may have passed between the 
observations of variables allows interesting possibilities in analysing the data, and can 
lead to the generation of temporal decision rules  Temporal decision rules that allow 
prediction of the future events using only past events are potential candidates for 
causal rules and are called p-causal rules.  Such rules can be further evaluated by a 
domain expert to determine whether they represent actual causal rules. Crucially, 
dependence diagrams can aid in visualizing dependencies among attributes to aid the 
domain expert in evaluating the potential causality of these dependencies. 

TimeSleuth can combine a number of sequential input records into one merged 
record. To uncover potentially causal rules, TimeSleuth examines the effects of a 
condition attribute, from previous time steps, on the decision attribute. Similarly, to 



identify acausal (i.e., not causal, but still temporal) rules, it examines the effects of 
condition attributes on a decision attribute in a previous time step.  If previous values 
can be retrodicted (predicted in reverse), the relationship is assumed to be acausal.  
The number of consecutive records merged together is determined by a window size. 
Suppose at each time step we register the current position of an object along the x-
axis, and also the direction of the movement that will be attempted during the next 
time step (left or right). So the effect of the attempted movement can be discovered in 
the next time step. Rule 1, for example, has been produced by merging two 
consecutive records in such an environment. x_1 and a_1 can be read as the previous 
position and movement directions, while x_2 can be read as the current location. 

We can compare a dependence diagram to a causal Bayesian network [8] for the 
task of displaying causal rule sets. Both display causal influences, but they employ 
different methods to derive their corresponding graphs, and their interpretations are 
different. In a Bayesian network, one can traverse the graph transitively from a 
grandparent to a parent and then a child node, and so on, while one cannot traverse a 
dependence diagram.The rest of the paper is organized as follows. Section 2 
introduces dependence diagrams first via an example and then formally. Section 3 
discusses pruning dependence diagrams. In Section 4 we present examples of 
dependence diagrams from two data sets. Section 5 concludes the paper. 

2  Dependence Diagrams 

As previously mentioned, a dependence diagram summarizes multiple sets of 
decision rules in a compact manner and shows the amount of influence that each 
condition attribute has on the decision attributes’ values. The diagram is not 
equivalent to a set of decision rules, as the original rule sets cannot be extracted from 
a dependence diagram. Each attribute in a dependence diagram can be a decision 
attribute as well as a condition attribute.  

In a dependence diagram, attributes are denoted as nodes in a graph and connected 
together. The strength of the connection (the weight of the edge) depends on how 
often they are used in predicting each other’s values. By definition, a decision 
attribute d depends on another (condition) attribute ci if attribute ci appears in rules 
that are used to predict attribute d. A dependence diagram can summarize 
instantaneous, acausal, or possibly causal rule sets, as defined in [4, 5].  

Before presenting a formal definition, we first provide an example of a dependence 
diagram. In Figure 1, a dependence diagram for temporal data from a simulated robot 
is shown. The data comes from a simulated robot doing a random walk in a two-
dimensional space, where x and y denote the position, a is the random action taken 
(the direction of movement), and f shows the presence or absence of food at the 
robot’s location.  The data represent repeated observations of the robot’s state, 
consecutively ordered by time. 

Figure 1 shows that we can determine the value of x reliably (accuracy of 100% as 
indicated in the node corresponding to x) from the values of x and a. In particular, the 
previous values of x and a, namely xt – 1 (read: x at time t-1, or the previous time step) 
and at – 1, are used in all the rules that predict the current value of x, namely xt, (read: x 



at time step t, or the current time). This is shown by links from nodes x and a to node 
x having a weight of 100%. The times of occurrence for the attributes are not shown 
in a dependence diagram. Figure 1 also shows that the value of a can be determined 
with an accuracy of 47% by using the values of a, x, y, and f attributes. The value of a 
depends mostly on x and y (x appears in 80% of the rules, while y appears in 76% of 
the rules), somewhat on a, (which appears in 64% of the rules), and to a lesser extend 
on f (40% of the rules).  A low accuracy value or link weight can suggest that a 
relationship does not exist or that insufficient evidence is available. For example, 
several links have 0% weight.  Such relationships can be pruned from the diagram. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. A dependence diagram for the robot data 

 
We now formally define a dependence diagram. For any rule set R that predicts the 

value of attribute d, if condition attribute ci appears in at least one rule in R, then d 
depends on ci.  This type of dependence is called static dependence, because it is 
determined by the static form of the rule set, as opposed to the run-time or dynamic 
behaviour of the rule set. 

Definition 1: If r ∈ R and ci ∈ CONDITIONS(r), then d = DECISION(r) depends 
on ci. 

Ignoring the time indexes, the percentage of rules in a rule set R in which attribute ci 
appears determines the strength of dependence of d on ci. 

Definition 2: Static Dependence Strength:  d statically depends on ci with strength 
s% with respect to a rule set R, written as Dd(ci) = s%, if ci appears in s% of the rules 
in R. 
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In rule r, d statically depends on ci with strength s% at time step t if ci appears in s% 
of the rules at time step t, written as Dd,t(ci). 

For a temporal rule computed using a window size of w > 0, we calculate Dd(ci) as 
follows: 

 Dd(ci) = Dd,1(ci),    if w = 1 or w = 2 
 Dd (ci) = max(Dd,1(ci), … Dd,w-1(ci)),  otherwise. 
Example: Let the set of condition attributes be {a, b, c} and the decision attribute be 

d. Suppose the window size is 3 and the rule set R contains 2 rules: {[If at Time 1: (a 
= 1) And at Time 2: (a = 1) and (b = 2), Then at Time 3: (d = true)], [If at Time1: (a = 
3) Then at Time 3: (d = false>)]}.  Here, Dd(a) = 100% (a appears in both rules) and 
Dd (b) = 50% (b appears in half of the rules).  

From the previous example, we have Dd,1(a) = 100%, Dd,2(a) = 50%, Dd,1(b) = 0%, 
Dd,2(b) = 50%. 

Dynamic dependence is similar to static dependence, except the strength of the 
dependence is determined according to the rules that actually get used for determining 
the value of the decision attribute. In other words, only the rules that get fired by the 
test dataset are considered for determining the strength of the edges in the dependence 
diagram.  

Definiton 3: Dynamic Dependence Strength: d dynamically depends on ci with 
strength s% with respect to rule set R and data set T, written as DDd(ci) = s%, if ci 
appears in s% of the rules that are fired when rule set R is applied to data set T. 

In the previous example, suppose only the first rule is fired. In this case we have: 
DDd (a) = 100%, DDd(b) = 100%, DDd,1(a) = 100%, DDd,2(a) = 0%, DDd,1(b) = 0%, 
and DDd,2(b) = 100%. 

We use a threshold value to prune weak and accidental dependencies.  
Definition 4: Threshold Dependence and Independence: d is dependent on ci if 

Dd(ci) > ε, where ε is a user-specified threshold. Otherwise, d is independent of ci. 
Definition 5: Dependence Diagram: A dependence diagram is a possibly cyclic, 

directed, weighted graph  <N, L>, where N is a set of nodes, each representing an 
attribute, and L is a set of directed links, each representing the dependence strength of 
a decision attribute on a condition attribute. The direction of the link is from the 
condition attribute to the decision attribute. A node represents a decision attribute 
with respect to the links pointing to it, and a condition attribute with respect to the 
links pointing away from it. 

In a static dependence diagram, weights are assigned to the links but not the nodes.  
No weights are assigned to nodes because the rules are not run on any data set and so 
no accuracy values are available. In a dynamic dependence diagram, weights are 
assigned to both the nodes and the links.  The weight of a node is the training or 
testing accuracy of the rules created for predicting the decision attribute that is 
represented by the node.  

To create a dependence diagram, the rule sets for predicting the values of one or 
more decision attributes are first generated from a training data set. A static 
dependence diagram can be drawn directly from the rule sets, but for a dynamic 
dependence diagram, each rule set must be evaluated on a selected dataset. For a 
given rule set, only one static dependence diagram can be derived, but multiple 
dynamic dependence diagrams can be derived by changing the test data set. 



If all rules in a rule set get executed, then the static and dynamic link strengths will 
be the same. This case holds in Figure 1, where the weights on the links show the 
static (and dynamic) strengths, while the weights of the nodes show the results from a 
particular run. 

Transitivity does not apply to dependence diagram graphs, because by definition 
only the immediate links to and from a node are meaningful. Thus, dependence 
diagrams cannot be traversed. This characteristic sets the dependence diagram apart 
from many other types of graph. 

3  Pruning Dependence Diagrams 

If the user of a dependence diagram is not interested in nodes or links that have low 
weight, the diagram can be pruned. Pruning can be performed at two levels, using a 
link pruning threshold and a node pruning threshold. At the link level, a link is pruned 
if it does not have enough strength, or in other words, enough importance, in 
determining the value of a decision attribute. At the node level, a node is pruned if its 
weight is too low, or in other words if it cannot be predicted accurately enough. Node-
level pruning is only possible with dynamic dependence diagrams.  

Each link in the dependence diagram has an associated weight that represents the 
static or dynamic dependence strength of a decision attribute on a condition attribute, 
as determined by the number of times the attribute has appeared in the rules 
predicting the decision attribute. In link oriented pruning, links that have a weight 
below the link pruning threshold are removed. 

In node oriented pruning, the nodes are examined one by one. Each node represents 
an attribute. Associated with each node is a weight representing the training or testing 
accuracy for that attribute when it was used as the decision attribute. Any node with a 
weight below the node pruning threshold is pruned unless there are links that point 
away from that node to other nodes. In other words, a node that is used is classifying 
another attribute is not removed.  All links that point to a pruned node are also 
pruned, regardless of their strength. 

It is important to note that link-level pruning must be performed before node-level 
pruning. A node with a low accuracy denotes a decision attribute with low 
predictability, but the same attribute may be important in predicting the value of 
another decision attribute. The examples provided later in the text will make this point 
clear. 

Link- and node-level pruning allow the user to choose the amount of detail in a 
dependence diagram. The user can thus concentrate on more influential attributes. 
This ability is important because the attributes in a data set may not all have equal 
importance, and when selecting the attributes to record in the data set, one may have 
chosen irrelevant attributes because of a lack of a priori knowledge. 



4  Examples of Dependence Diagrams 

In this section, we show dependence diagrams for two temporal datasets.  The first 
dataset is from a discrete event simulator called URAL [11], where known atemporal 
and temporal rules govern an artificial environment. The second dataset is from a 
weather station in Louisiana AgriClimatic Information System [10]. We used 
TimeSleuth to generate rules from the datasets and then constructed a variety of 
dependence diagrams. 

4.1 Data domains 

The URAL dataset is a synthetic dataset derived from consecutive observations of a 
artificial robot moving in a simulated world.  The world is a rectangular, 8 × 8 board. 
The robot performs a random walk in the domain: at each time-step, it randomly 
decides on one of the following actions a: left (L), right (R), up (U), or down (D).  
Left and right correspond to moving along the x-axis and up and down to moving 
along the y-axis. We used 2500 records for training, and 500 for testing the rules 
(predictive accuracy). When predicting the attribute x, we expect that a rule set 
derived using a window size of 1 will not contain highly accurate rules. The reason is 
that, based on our understanding of the domain, the current value of x depends on the 
previous value of x, and the previous direction of movement. The same holds for y. So 
we expect that a rule set derived from a window size of 2, called the p-causal rule set, 
will contain highly accurate rules.  

The second example, the Louisiana weather dataset, is a real-world dataset from 
weather observations in Louisiana. It contains observations of 8 environmental 
attributes gathered hourly from 22/7/2001 to 6/8/2001. There are 343 training records, 
each with the air temperature, the soil temperature, humidity, wind speed and 
direction and solar radiation, gathered hourly. 38 other records were used for testing 
the rules and generating predictive accuracy values. Since this dataset describes real 
phenomena, interpreting the dependencies and relationships in it is harder than for the 
robot dataset.   

It should be emphasized that although both these data sets are from temporal 
domains, a dependence diagram can be generated from any given data set. For a non-
temporal dataset, we refrain from mentioning causality or acausality, but we can 
interpret the links in a dependence diagram as associations. 

4.2 The dependence diagrams 

Suppose a user wants a dynamic dependence diagram for the domain of the artificial 
robot. To generate such a dependence diagram, the user first creates a data set 
containing observations of the values of the four attributes. The user then generates 
four p-causal rule sets with a window size of 2, each with one of the available 
attributes set as the decision attribute. The results can be used to generate the 
dependence diagram shown in Figure 1. 



The user may decide to prune any link with strength below 80% and any unneeded 
node with accuracy below 50%.  In this case, 12 out of 16 links are removed, but none 
of the four nodes are removed. The results are shown in Figure 2. Notice that the node 
corresponding to a is not pruned (even though its accuracy is below the threshold), 
because it is an important participant in determining the values of x and y. 

From the diagram, we can see that the value of x can be predicted with 100% 
accuracy using previous values of a and x, and the value of y can be predicted with 
100% accuracy from the previous values of a and y.  The values of a and f cannot be 
predicted with sufficient accuracy to meet the constraints. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. The pruned dependence diagram for the robot data 

 
The choice of appropriate threshold values depends on the domain and is left to the 

domain expert. A domain expert can observe the relative strengths and choose to 
allow only certain links to remain. Various threshold values can be tried to obtain 
different pruned dependence diagrams. 

We can observe the influence of the attributes on each other in the dependence 
diagram shown in Figure 2. If a link exists from a node to itself, then the value of the 
corresponding attribute at a different time (preceding or succeeding) is used for 
predicting the present value. A node can only point to itself if the window size is 
bigger than 1.  

If a rule set is derived from a p-causal investigation with TimeSleuth, the links in 
either static or dynamic dependence diagrams for the rule set may be examined by a 
domain expert to see if the dependencies they represent could be causal.  These links 
are based on potentially causal relationships.  However, if the rule set is derived from 
an instantaneous or acausal investigation, the presence of a link in a dependence 
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diagram is unrelated to the existence of causality. In this case, none of the 
dependencies are suggested as p-causal.  

Considering the second dataset, suppose the user is interested in a dynamic 
dependence diagram for the weather dataset, where the strength of every link is at 
least 40% and the strength of every node (unless otherwise needed) is at least 50% for 
a p-causal investigation with window size 2. As with the robot data, the user first 
constructs the diagram with all nodes and links. Figure 3 shows the diagram after 
pruning the links by removing any link with strength less than 40%. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Dynamic dependence diagram for the weather data 

 
Finally, we prune unneeded nodes with accuracies less than 50%. The results are 

given in Figure 4. The dynamic dependence diagram in Figure 4 displays how the 
values of the attribute are related to each other. For example, the value of Soil 
Temperature is highly dependent on its own previous value and somewhat dependent 
on Air Temperature. 
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Fig. 4. The pruned dynamic dependence diagram for the weather data. 

5  Concluding Remarks and Future Work 

Making sense of the relations implied in a rule set is not easy because of the textual 
representation of such rules. We introduced dependence diagrams as a way of 
summarizing the relationships among a number of variables. They provide a visual 
aid for understanding the amount of influence of the attributes on each other. We 
provided examples of dependence diagrams that describe relations in synthetic and 
real datasets. A dependence diagram can summarize many rule sets generated from 
the same dataset, each with a different decision attribute. The complexity of a 
dependence diagram depends on the number of attributes rather than the number of 
generated rules. 

Dependence diagrams have not yet been integrated into TimeSleuth, so they have to 
be derived manually. Automating their generation would allow the user to prune the 
diagram using different threshold values in real-time and notice important 
relationships more easily. 
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