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Abstract. Discovering causal relations in a system is essential to understanding how it 
works and to learning how to control the behaviour of the system. RFCT is a causality miner 
that uses association relations as the basis for the discovery of causal relations. It does so by 
making explicit the temporal relationships among the data. RFCT uses C4.5 as its 
association discoverer, and by using a series of pre-processing and post-processing 
techniques enables the user to try different scenarios for mining causality. The raw data to 
be mined should originate from a single system over time. RFCT expands the abilities of 
C4.5 in some important ways. It is an unsupervised tool that can handle and interpret 
temporal data. It also helps the user in analyzing the relationships among the variables by 
enabling him/her to see the rules, and statistics about them, in tabular form. The user is thus 
encouraged to perform experiments and discover any causal or temporal relationships 
among the data. 

1. Introduction 

Knowing the causal relations between the input and output of a system allows us to 
predict the behaviour of that system. If any of the inputs can be manipulated, then we may 
be able to control the system to obtain a desired output. Causality mining is the search for 
causal relations in data. It has been a source of extensive (sometimes philosophical) 
debate [1, 5, 9]. The question of whether we should use the term "temporal rule" or use 
"causal rule" is subject to discussion. What we observe in a system is a series of variables 
taking on different values. Thus we only observe associations among the values of the 
variables. Whether or not this temporal association portrays a causal relationship is not 
always obvious, hence the preference of some researchers to use the term "temporal rule." 
Other researchers claim that under certain conditions causal relations can be discovered 
reliably [7]. In this paper we avoid entering this debate and use the term "causal" in much 
the same sense as "temporal." Not distinguishing between causal and temporal is justified 
by the fact that the tool introduced in this paper is separate from the system under 
investigation, and it does not assume that the user can perform interventions in the system 



 

 

to see how purposefully changing certain variables affects the others. We thus leave the 
determination of the nature of the relationship (causal or merely temporal) to the domain 
expert. 

C4.5 [8] is a standard, widely used and available decision tree generator that also 
produces classification rules. It is a supervised tool that takes as input a series of variables, 
called condition variables, and outputs a tree or a set of rules to predict the value of a 
single decision variable. The user has to specify which variable is to be considered as the 
decision variable. This requirement makes the algorithm fast compared to the 
unsupervised methods. C4.5 does not distinguish the passage of time among the instances, 
so to go from associations to temporal and causal relations, we make the temporal 
relationship in the data more explicit as a preprocessing step, run C4.5, and then adjust the 
output to obey the original temporal relations. We thus use temporal order to justify the 
interpretation of association relations as causal ones. We have seen that this leads to 
results that agree with common sense [2, 3]. 

 In the rest of the paper we present RFCT (Rotated Flattening for C4.5 with enforced 
Temporal ordering), the tool we have developed for the discovery of temporal and causal 
rules. RFCT is written in Java and has a graphical user interface. It expands the abilities of 
C4.5 in many ways. Briefly, it is an unsupervised tool that can handle and interpret 
temporal data. It also helps the user in analyzing the relationships by enabling the user to 
see the rules, and statistics about them, in tabular forms. Section 2 discusses the approach, 
and Section 3 concludes the paper. 

2. The RFCT Approach 

In this section, we describe the RFCT approach. First, we describe the preprocessing 
done to enable C4.5 to discover temporal relations. Input is a series of temporally ordered 
instances of m values. We then present the RFCT algorithm, and discuss the 
postprocessing that ensures that the user is presented with temporally valid output. 

 In the preprocessing stage, RFCT merges two or more consecutive records together, 
increasing the amount of information in each record. This operation is called flattening 
[2]. For example, suppose we have two records: <x11, x12, x13, x14, x15> observed at time 1, 
and <x21, x22, x23, x24, x25> observed at time 2. Flattening them with a window of size 2 
merges them into the record <x11, x12, x13, x14, x15 , x21, x22, x23, x24, x25>. In this flattened 
form it is easier to discover temporal and causal relations where the values at one time 
step have an influence on the values seen at the next time step. The number of records 
merged is determined by the time window.  

The RFCT algorithm is shown in Figure 1. Since C4.5 expects the last value in each 
record to represent the decision attribute, a rotation of the fields is performed as necessary 
to ensure that the proper attribute is set as the decision variable. The Fw(t,D) is the 
flattening operator, which given the unflattened input D, the time window w, and the 



 

 

current time t in the input, returns a flattened record made of w consecutive records, 
starting at index t, in D. The resulting flattened records are then made available to C4.5. 

 
 

Algorithm RFCT. 
Input:  a set of m variables V; a data set D consisting of T records with m values; and 
            a window size w. 
Output: a set of decision rules R. 
for j = 1 to m 
        D' = rotate the values in each record d ∈ D such that value in vj is the last 
        member of d. 
        Flat = the sequence of values yielded by Fw(t,D'),  for all t, w ≤ t ≤ T.  
        R = R ∪ C4.5T(Flat) 
end for 
return R 

Fig. 1. The RFCT Algorithm 

Flattening causes a loss of temporal information, because every w consecutive records 
in the original input merge in the same flattened record, and are no longer distinguished 
by their temporal order. A non-temporal tool such as C4.5 treats all variables as if they 
were observed at the same time. Thus in the output a variable from the future may appear 
before a variable from the past. To make sure that any temporal order is respected in the 
output, RFCT uses a preprocessing step to re-order the variables as needed. This 
postprocessing step is meant to make the temporal order in the data explicit again. 

C4.5 is a decision tree builder, and the classification rules it outputs are derived from 
the decision tree. So there are two distinct programs that the user should run in the C4.5 
package. The first one, c4.5, is the decision tree builder, while the c4.5rules derives rules 
from the decision tree created by c4.5. Standard C4.5 uses a greedy algorithm with one 
step look-ahead to expand the tree, and all condition variables are supposed to be 
available for choosing. With flattened data this creates problems both in the tree and in the 
derived rules because C4.5 may employ the variables out of their temporal order. This can 
create problems especially when the tree is being traversed in real time, where the records 
keep coming and decisions have to be made immediately before seeing the next record. 
To make sure that the decision tree respects the temporal constraints, we have modified 
C4.5's tree building algorithm. Whereas previously C4.5's only consideration was to build 
a more compact tree with the least amount of error, now an additional constraint forces the 
algorithm to choose variables in the correct temporal order. As an example, if the 
algorithm has chosen a variable from time step n, then from that branch in the tree it has 
to choose variables that appear in time step m, m ≥ n. This is done even if there are 
variables that would result in a tree with less error, but appeared in a time step previous to 
n. As a side effect, decision trees may be of lower quality [4]. Figure 2 shows two 
example trees. We are assuming that each of Ti  1≤ i ≤ 3 contains variables from time step 
i. At left we see a tree created normally (that violates temporal order), while at right the 
temporal order is respected.  

 



 

 

 
 
 
 
 
 
 
 
 
 

Fig. 2. Left: A tree that violates temporal order, and Right: a tree that respects temporal order. 

Temporal order in different branches is considered independent. This makes the root 
the most important. If it is chosen from a later time step, nothing from the previous time 
steps may be used, restricting the algorithm's ability to construct a tree. The current 
version of RFCT stops at this stage, but to improve the process of building such temporal 
trees, one can turn the problem into a Constraint Satisfaction Problem [6] where the 
choice of one variable limits the future choices in that branch of the tree. As is normal in 
constraint satisfaction problems, we may need to backtrack up the tree branches and 
choose other condition variables [4]. 

 The other way to make sure temporal orders are respected is to leave C4.5 to create the 
decision trees as usual, but to rely on the rule generation part (c4.5rules) to "sort" the 
variables in the output. For example, if c4.5rules generate a rule such as: If {(x11 = 1) 
AND (x31 = 5) AND (x24 = 1)} then x35 = true, We could modify it to look like this: If 
{(x11 = 1) AND (x24 = 1) AND (x31 = 5)} then x35 = true. This modification to produce 
temporal rules does not require any changes in C4.5's algorithms, whether in the decision 
tree generator or in the rule generator.  
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Fig. 3. How often each attribute appears in the rules 

Unlike with standard C4.5, in RFCT the user can choose more than one decision 
attribute. In such cases, C4.5 is invoked multiple times, each time with one selected 
attribute as the decision attribute. RFCT's graphical user interface helps in interpreting the 
results by using tables that show information temporally. The rules generated by c45rules 
have a confidence level. To filter the rules, the user can specify a minimum confidence 
level, and as a result only rules will higher values will be presented. The user can see how 
the selected time window has affected the results by having the rules laid out according to 
the time step in which each variable appears. The user can also see how important each 
variable has been in forming the rules, as in Figure 3. RFCT also shows the frequency of 
attribute usage in rules that were actually fired. In other words, the more a rule has been 
used (on test data or on training data), the more important those variables will be. RFCT's 
built-in discretization ability allows it to better handle non-continuous attributes. 

 

3. Concluding Remarks 

RFCT is an unsupervised tool based on C4.5 that is targeted at discovering causal and 
temporal rules. It relies on associations, but instead of statistical methods such as 
conditional independence, it assumes temporally ordered observations, and finds 
temporally ordered rules based on that assumption. RFCT allows the user to experiment 
with different scenarios and see what kinds of rules are discovered when different window 
values are used. The tabular output of information about the rules and the variables helps 
the user assimilate the discovered relations.  

In theory, the RFCT approach can be used with any association discoverer, not just 
C4.5, so it is possible to replace C4.5 with another tool if its source code is available. The 
RFCT package includes sources, executable files, on-line help, and C4.5 patch files. It is 
available for download from http://www.cs.uregina.ca/~karimi/downloads.html.  

References 

1. Freedman, D. and Humphreys, P., Are There Algorithms that Discover Causal Structure?, 
Technical Report 514, Department of Statistics, University of California at Berkeley, 1998. 

2.  Karimi, K. and Hamilton, H.J., Finding Temporal Relations: Causal Bayesian Networks vs. C4.5, 
The Twelfth International Symposium on Methodologies for Intelligent Systems (ISMIS'2000), 
Charlotte, NC, USA, October 2000. 

3. Karimi, K. and Hamilton, H.J., Learning With C4.5 in a Situation Calculus Domain, The 
Twentieth SGES International Conference on Knowledge Based Systems and Applied Artificial 
Intelligence (ES2000), Cambridge, UK, December 2000. 

4.  Karimi, L. and Hamilton, H.J., Temporal Rules and Temporal Decision trees: A C4.5 Approach, 
Technical Report CS-2001-02, Department of Computer Science, University of Regina, Regina, 
Saskatchewan, Canada, December 2001. 



 

 

5.  Korb, K. B. and Wallace, C. S., In Search of Philosopher's Stone: Remarks on Humphreys and 
Freedman's Critique of Causal Discovery, British Journal of the Philosophy of Science 48, pp. 
543-553, 1997. 

6.  Nadel, B.A., Constraint Satisfaction Algorithms, Computational Intelligence, No. 5, 1989. 
7.  Pearl, J., Causality: Models, Reasoning, and Inference, Cambridge University Press. 2000. 
8.  Quinlan, J. R., C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993. 
9. Spirtes, P. and Scheines, R., Reply to Freedman, In McKim, V. and Turner, S. (editors), Causality 

in Crisis, University of Notre Dame Press, pp. 163-176, 1997. 


