
The Iterative Multi-Agent Method for Solving Complex
Search Problems

Kamran Karimi

Department of Computer Science
University of Regina

Regina, Saskatchewan
Canada S4S 0A2

karimi@cs.uregina.ca

Abstract. This paper introduces a problem solving method involving
independent agents and a set of partial solutions. In the Iterative Multi-Agent
(IMA) method, each agent knows about a subset of the whole problem and can
not solve it all by itself. An agent picks a partial solution from the set and then
applies its knowledge of the problem to bring that partial solution closer to a
total solution. This implies that the problem should be composed of sub-
problems, which can be attended to and solved independently. When a real-
world problem shows these characteristics, then the design and implementation
of an application to solve it using this method is straightforward. The solution to
each sub-problem can affect the solutions to other sub-problems, and make
them invalid or undesirable in some way, so the agents keep checking a partial
solution even if they have already worked on it. The paper gives an example of
constraint satisfaction problem solving, and shows that the IMA method is
highly parallel and is able to tolerate hardware and software faults.
Considerable improvements in search speed have been observed in solving the
example constraint satisfaction problem.

1 Introduction

Encoding a real-world problem to be solved by a computer is often time consuming,
as it requires a careful mapping process. If the representation inside the computer
matches the original problem domain, then the design and implementation can be
done faster, and there will be fewer bugs to deal with. Many complex problems are
composed of different sub-problems, and solving them requires the collaboration of
experts from different fields. One example is designing an airplane. The sub-problems
usually interact with each other, and a change in one place can invalidate the solution
to another part. This can happen in unpredictable ways. This form of emergence is
usually considered a nuisance in engineering fields, as it makes it harder to predict the
behavior of the whole system. Handling this emerging interaction is not trivial for big
problems, and is worse when the problem domain is vague and there is limited or no
theoretical knowledge about the possible interactions between the sub-problems.

In this paper we propose to use the Iterative Multi-Agent (IMA) method for solving
complex problems. Section 2 explains the IMA method in general and outlines the

basic principles. Section 3 presents a practical application of the IMA method to solve
a computationally demanding Constraints Satisfaction Problem. Section 4 concludes
the paper and outlines some of the future directions of this work.

2 Segmenting A Complex Problem

The IMA method is a decentralized method involving the use of multiple agents, in
the form of software processes, to solve complex search problems. Each agent has
knowledge relevant to part of the problem, and is given responsibility for solving one
or more sub-problems. The agents do not collaborate directly, and the final solution to
the problem emerges as a result of each agent's local actions. Overlap is allowed in the
agents' knowledge of the problem and in their assigned sub-problems.

Often a problem P can be expressed in terms of n sub-problems, P1 to Pn, such that
P = i=1…n Pi. Each sub-problem Pi can have a finite or infinite number of candidate
solutions Si = {Si1, Si2, …}, some of which may be wrong or undesirable. Each partial
solution of the whole problem contains a candidate solution for each sub-problem. We
represent a partial solution as an array [S1j, S2j, S3k…], where S1i is a candidate solution
to sub-problem P1, S2j is a candidate solution to sub-problem P2, and so on.
Segmenting a bigger problem into sub-problems makes the task of writing agents to
solve the sub-problems easier, as a smaller problem is being attacked. As well, if a
sub-problem is present in many problems, it may be possible to reuse an agent that
solves that sub-problem. This translates to saves in design, implementation and
debugging efforts that would otherwise be needed for the development of a
completely new agent. The system can achieve some fault tolerance if the agents have
overlapping information [4]. The crash of an agent (or the computer it is running on)
will not prevent the whole system from finding a solution if the combined knowledge
of other agents covers the lost agent's knowledge of the problem. This is of special
interest in long-running programs. If needed, the system can provide security by
restricting sensitive knowledge to trusted agents.

Interaction is common in complex systems made of sub-problems. To make it more
probable that a solution can be found, a set of partial solutions is kept. This set can be
managed as a workpool for example. The set can be initialized by randomly
generating partial solutions, some or all of which may be wrong. Having more than a
single partial solution matches the existence of more than one agent, and makes a
parallel search for a solution possible. Having a set of solutions to work on also means
that we can end up with different final solutions, possibly of different qualities. For
example, some may be elegant, but expensive to implement, and others may be
cruder, but cheaper. These solutions can be used for different purposes without the
need to develop them separately. This enables a two level problem solving strategy.
At the first level, "hard requirements" are met in the final solutions. At the second
level, "soft requirements" are considered in the process of selecting one or more of the
final solutions produced at the first level.

The following describes how the system works. The problem is defined in terms of
its sub-problems, and agents are assigned the job of solving these sub-problems. Each
agent checks one partial solution at a time to see if it satisfies its assigned sub-

problem(s). If not, it tries to create a new partial solution. The new partial solution
may be invalid for another sub-problem, so other agents will have to look at it later
and if needed, find another solution for the sub-problem with the invalidated solution.
This is an iterative process, because agents can repeatedly invalidate the result of each
other's work in unpredictable ways. Each agent is searching its own search space for
solutions to its part of the problem, in the hope of finding a place that is compatible
with all other parts. All the agents should work on a partial solution in order to make
sure that all the sub-problems in that partial solution are solved. This decentralized
form of activity by the agents makes it possible for them to run in parallel, either on a
multiprocessor or on a distributed system. A partial solution is removed from the
workpool when all the agents have looked at it and none needed to change it,
signifying that it has turned into a total solution. They can signal this by setting flags,
and the first agent that notices that all the flags are set can take the work out of the
pool. Any changes done by one agent results in all flags being reset. The algorithm
can stop when one or more solutions have been found. To make sure the program
terminates, it can count the number of times agents work on partial solutions, and stop
when it reaches a value determined by the user. The best partial solution at that time
can then be used.

The system designer can use random methods to divide the problem, assign sub-
problems to agents, create the initial partial solutions, and arrange for the agents to
visit the partial solutions. Alternatively, he can choose to use deterministic methods in
any or all of these activities. But even when everything in the system design is
deterministic, the algorithm in general does not guarantee finding a solution. That is
because predicting the effects of the interactions between the agents may not be
possible by the designer. There is also no guarantee of progress towards a solution.
However, if the agents operate asynchronously, it is less probable that a specific
sequence of changes will be performed repeatedly, which in turn makes it less
probable that the system enters a cycle. In this case, if a global solution exists, then
given enough time the system is likely to find it.

IMA is different from methods that use genetic operations. Genetic methods use
random perturbations followed by a selection phase to move from one generation to
the next. None of these concepts exists in IMA. The main element that introduces
randomness into the picture is the interaction between the agents' actions.

3 Segmenting A Constraint Satisfaction Problem

This section demonstrates how the IMA method can be applied to a simple form of
Constraint Satisfaction Problem (CSP). It is easy to automatically generate test CSPs,
and they are decomposable into interacting parts. Since we want to apply the IMA
method to exponential problems, we use the backtracking method to solve the
generated CSPs.

3.1 Constraint Satisfaction Problem

In a CSP we have a set of variables V = { v1, v2…} , each of which can take on values
from a set D = { d1, d2…} of predefined domains, and a set C = {c1, c2…} of
constraints on the values of the variables. A constraint can involve one or more
variables. Finding the solution requires assigning values to the variables in such a way
that all the constraints are satisfied. Sometimes we need all such assignments, and at
other times just one is enough. It may be desirable to have partial solutions, which are
variable assignments that satisfy some, but not all of the constraints.

Many problems can easily be formulated as CSPs, and then standard methods can
be used to solve them. CSPs have been used in scheduling, time tabling, planning,
resource allocation and graph coloring. In most cases finding a solution to a CSP
requires domain-specific knowledge, but some general methods are applicable in
many situations. The traditional way of solving a CSP is to assign a value to one
variable and then see if the assignment violates any constraints involving this variable
and other previously instantiated variables. If there is a violation, another value is
chosen; otherwise we go to the next unassigned variable [3]. If we exhaust the domain
of a variable without success, then we can backtrack to a previously instantiated
variable and change its value.

3.2 Related Work

Several methods rely on multiple-agents to solve a CSP. The Distributed Constraint
Satisfaction Problem (DCSP) is defined as in [6]. In DCSP the variables of a CSP are
divided among different agents (one variable per agent). Constraints are distributed
among them by associating with each agent only the constraints related to its variable.
The asynchronous backtracking algorithm [6] allows the agents to work in parallel.
Unlike the classic backtracking algorithm, it allows processes to run asynchronously
and in parallel. Each agent instantiates its variable and communicates the value to the
agents that need that value to test a constraint. They in turn evaluate it to see if it is
consistent with their own value and other values they are aware of. Infinite processing
loops are avoided by using a priority order among the agents. In Asynchronous weak-
commitment search [6], each variable is given some initial value, and a consistent
partial solution is constructed for a subset of the variables. This partial solution is
extended by adding variables one by one until a complete solution is found. Unlike
the asynchronous backtracking case, here a partial solution is abandoned after one
failure.

In [1], cooperating constraint agents with incomplete views of the problem
cooperate to solve a problem. Agents assist each other by exchanging information
obtained during preprocessing and as a result improve problem solving efficiency.
Each agent is a constraint-based reasoner with a constraint engine, a representation of
the CSP, and a coordination mechanism. This agent-oriented technique uses the
exchange of partial information rather than the exchange or comparison of entire CSP
representations. This approach is suited to situations where the agents are built
incompatibly by different companies or where they have private data that should not
be shared with others.

3.3 Segmented Constraint Satisfaction Problem

In the Segmented CSP (SCSP) each constraint is considered a sub-problem. A
variable can be shared among more than one constraint, so there is interaction
between sub-problems. The SCSP Solver (SCSPS) uses a workpool model of parallel
processing [2]. A number of partial solutions of the problem are created by assigning
random values to each variable. Multiple agents are then started to solve the CSP.
Each of these agents is given some knowledge about the problem by assigning it a set
of variables and a set of constraints. There is no need to worry about the
interdependencies among the constraints assigned to different agents. Each agent
determines the values that can be assigned to its assigned variables. Having a
constraint entitles the agent to test its validity. Agents ignore other variables and
constraints in the problem, as they do not need to know anything about other agents'
knowledge of the problem. This greatly eases the designer's initial knowledge-
segmenting job, which can even be done randomly. Any changes made later to an
agent's knowledge of the problem will not necessarily result in a wave of changes in
other agents. It also does not matter if the variables in a constraint are not assigned to
the agent that has that constraint, as other agents that are assigned those variables will
be responsible for changing their values.

Dividing the problem among the agents means that each one of them has to search
a smaller space to solve its portion of the problem, and so it can run faster, or run on
slower hardware. If there are v variables and c constraints in the problem, each agent j
will have to deal with vj < v variables and cj < c constraints. Agents can use any
method in solving the portion of the problem assigned to them. Each agent may have
to do a complete search of its own assigned space more than once. This is because a
given state in agent j's search space may not be consistent with the current state of
another agent k, while that same state may work when agent k goes to another location
in its search space.

Each agent gets a partial solution from the pool, tries to make it more consistent,
and then returns it to the pool. The partial solution is accessible to only one agent
while it is out of the workpool. An agent never interacts with others directly because
all communication is done through the workpool. This simplifies both the design and
the implementation by reducing the amount of synchronization activity. If there is
enough work in the pool, all the agents will be busy, ensuring that they can all run in
parallel. In a multi-processor or a multi-computer [5], this could result in execution
speed-up. Agents can disturb other agents' work by changing the value of a common
variable, or by signaling the need for a change in a variable. This means that a partial
solution must be repeatedly visited by the agents.

3.4 The Demonstration Program

The program SCSPS⋅java implements SCSPS. It is written in Java and developed
using Sun's Java Development Kit version 1.2. The test computer was a 120MHz
Pentium with 96MB RAM and running Windows 95. SCSPS creates a problem by
generating some variables and a set of constraints on them. The constraints are of the
form x + y < α, where x ∈ {xl,…,xh} and y ∈ { yl,…,yh} are positive integers within a

specified range, and α is a constant. It is possible to create harder or easier problems
by changing the domain or constraint limits. Figure 1 shows one possible set of
variables and the constraints on them.

Fig. 1. The variables and constraints of an example CSP.

One practical use for this type of constraints is in Job-shop scheduling, where each
job has a start time start which is a variable, and a duration duration which is a
constant. The problem can be defined as the requirement that for each pair of jobs j
and k we should have only one of startj + durationj < startk or startk + durationk <
startj. An expert decides which one of these two constraints is to be present in the
final set of constraints. The aim is to find suitable values for all start variables so that
all the constraints are satisfied.

After the random problem is generated, the program creates a workpool and fills it
with random partial solutions, which are probably inconsistent. Agents are then
created as independent Java threads and each is randomly assigned some variables
and constraints. It is possible for some variable(s) and constraint(s) to be assigned to
more than one agent. Having a variable enables an agent to change its value. Having a
constraint enables an agent to test it. An agent with an assigned constraint should have
read access to the variables of that constraint. The agents run in a cycle of getting a
partial solution from the pool, working on it, and putting it back. After completing a
cycle, the agents wait for a small, randomly determined amount of time before going
on to the next iteration, thus making sure that there is no fixed order in which the
partial solutions are visited. The randomness present in the design means that the
solutions will differ from one run to the other, even when working on the same
problem. The workpool counts the number of times it has given partial solutions to
the agents, and terminates the program as soon as it reaches a predetermined value. In
general it is possible to let the agents run indefinitely, or until all the partial solutions
are consistent. The main thread of the program runs independently of the agents and
can automatically check all the partial solutions in the workpool and print the
inconsistencies. Figure 2 shows two of the agents working on the example CSP.

Fig. 2. Two agents working on the example CSP.

Variables: x0, x1, x2, x3, x4

Constraints: x3 + x2 < 10, x0 + x2 < 7, x0 + x1 < 6, x1 + x1 < 12, x4 + x3 < 5

Agent 1

Owned variables: x0, x2, x3

Constraints:
x3 + x2 < 10, x0 + x1 < 6, x1 + x1 < 12

Agent 2

Owned variables: x0, x1

Constraints:
x0 + x2 < 7

Figure 3 shows the workpool for the example CSP and some of the partial solutions it
contains. The partial solutions change over time.

Fig. 3. Workpool of partial solutions for the example CSP.

A partial solution for n variables can be considered a vector representing a point in
an n dimensional space. Each agent has to deal with only m < n variables. There is a
"change" flag associated with each variable, which is used by agents to signal the
need for that variable's value to change because its current value violates a constraint.
This need is detected by an agent that has the violated constraint, but the actual
change should be done by one of the agents that is assigned the variable.

Each agent starts the processing by getting a partial solution from the pool and then
changing the value of all the variables that it is assigned and which have their
"change" flag set. These variables should change because, as detected by other agents,
their values violate some constraints. A partial solution will thus move from its
currently unsuitable point. This is done in the hope of finding another point that
satisfies more constraints. Agents then try to ensure that the variables they are
assigned satisfy the constraints they are aware of. Each constraint x + y < α can be one
of three types, and what the agent does depends on this type.

1. If both x and y are assigned to the agent, a slightly modified version of
backtracking is used to find suitable values for x and y. The modifications have to
do with the fact that here finding a solution is a multi-pass process. For instance,
the variables are changed from their current values, as opposed to a fixed starting
point, thus making sure that the whole domain is searched

2. If only one of x and y are assigned to the agent, only the value of the variable that
is assigned to the agent is changed, and the other variable is considered a
constant.

3. If none of x and y are assigned to the agent, then none of them is changed.

Variables are changed by incrementing their values, with a possible wrap-around to
keep them within the specified domains. This is to make solving the problem harder,
as a trivial solution for this type of constraints is to simply use the smallest values of
the variables. After this phase, each agent inspects its constraints of the second and
third types. If it finds an inconsistency, it sets the "change" flag of the unassigned
variable(s). This is done because this agent has done all it can, and now is signaling
the failure to others. Another agent that is assigned these inconsistent variables will
get this work later and change the values. The agents continue like this until the
workpool's counter for the number of checked-out partial solutions reaches the limit.
At this point no more partial solutions are given out and the agents stop executing.
The main processing loop in each agent is shown in figure 4.

Partial Solution 1: [1,3,4,2,2]
Partial Solution 2: [7,2,6,1,3]
Partial Solution 3: [3,7,3,1,4]

Fig. 4. The algorithm followed by each agent in SCSPS.java.

Table 1 contains the results of several runs of the program to solve six problems
using 1, 5, 10 and 20 agents. 30 runs were attempted for each row. There were 21
partial solutions in the workpool, and they were created randomly for each run. The
values under the columns Variables, Constraints, and Agents, represent the
corresponding values in the generated problem. No checks were done to see if a
partial solution has been turned into a total solution, and so the value of Rounds
determined the number of times the workpool manager gave out partial solutions to
the agents before the program stopped. This value is 1 when there is a single agent in
the system, because in this case a standard backtracking method was employed, and a
single solution was sought (multi-agent runs usually find many more solutions). Runs
that did not finish within the time limit of 120 seconds were aborted. The number of
aborted runs is indicated under the Timed out column. The 4 rows within each
outlined box correspond to the same problem.

Run Time (ms)Vars Constraints Agents Rounds Timed out
Avg Best Worst Std Dev

10 10 1 1 0 130 100 390 57
10 10 5 15000 0 18006 17520 24600 1428
10 10 10 15000 0 8958 8840 9070 66
10 10 20 15000 0 6148 4720 14830 2858

10 20 1 1 0 186 50 930 198
10 20 5 15000 0 21765 18070 33780 4924
10 20 10 15000 0 9588 9060 10820 388
10 20 20 15000 0 5447 4890 5830 211

20 20 1 1 8 - 50 - -
20 20 5 15000 0 17712 17570 18290 132
20 20 10 15000 0 9522 8890 22960 2569
20 20 20 15000 0 4899 4660 6310 335

20 40 1 1 4 - 60 - -
20 40 5 15000 1 - 17680 - -
20 40 10 15000 0 9704 8840 19230 2373
20 40 20 15000 0 4855 4720 5930 214

50 50 1 1 27 - 110 - -
50 50 5 15000 0 23478 17680 62940 12731
50 50 10 15000 0 8998 8900 9192 51
50 50 20 15000 0 6383 4670 52240 8661

50 100 1 1 30 - - - -
50 100 5 15000 3 - 18070 - -
50 100 10 15000 2 - 9060 - -
50 100 20 15000 0 5801 4840 13780 2497

Table 1. The results of several runs of the program.

As expected, a single-agent backtracking method's success rate deteriorates
quickly, until it stops finding any solutions within the time limit. The IMA method,
on the other hand, shows very good scalability and performs like a constant-time
problem solver for the range of problems in this table. One could speed up the process

1. Get a partial solution from the pool
2. Alter my variables that have their “change” flag set by other agents.
3. Use my constraints to find a consistent value for my variables.
4. Check the constraints with one or two missing variables; set their “change” flag if an inconsistency is found.
5. Give the partial solution back to the pool.

of finding answers at the top area of the table by decreasing the value of Rounds. For
example, 2000 rounds would be quite enough for the first 8 rows.

An interesting observation is that having more agents is helping the system find
solutions faster. This is to be expected, even though on a single-processor computer
introducing m agents to solve the problem adds an overhead of Ο(m). The reason is
that, assuming a non-overlapping segmentation of the problem into sub-problems Pi,
each with a search space size of αi, then the whole search space is of size Πα i. This
includes Ο(an) or Ο(n!) problems as special cases. While each of αi values may
represent a small and manageable space, Πα i can represent a huge search space. We
have thus converted the problem of searching a huge space to that of searching many
smaller ones, even though the nature of the problem is unchanged. As is the case in
combinatorial problems, reducing n by a little can dramatically speed up the process
of finding a solution to that problem. This compensates for the effects of having more
than one agent. Table 2 confirms this, and shows that increasing the number of agents
beyond a point will eventually have a rather small, negative effect on execution time.
Here 101 partial solutions were in the work pool, and 30 runs were performed for
each row.

Run Time (ms)Vars Constraints Agents Rounds Timed out
Avg Best Worst Std Dev

30 30 5 20000 0 26771 23390 63720 9875
30 30 10 20000 0 11958 11860 12080 56
30 30 20 20000 0 6678 6260 15380 1647
30 30 40 20000 0 7301 5110 10110 1757
30 30 60 20000 0 8022 5380 10050 1626
30 30 80 20000 0 8255 5820 10550 1732
30 30 100 20000 0 8651 5930 10820 1556

Table 2. The effects of increasing the number of agents on the execution time.

One observation from the results of the runs with a high number of agents was that
because of the value of Rounds, in many cases a partial solution that was invalid at the
start, and was not visited by all the agents, turned into a total solution. One reason for
this is that these randomly generated partial solutions had some of their sub-problems
already solved. The other reason is that due to the high number of agents and the
resulting redundancy in the system, other agents were able to move the partial
solutions towards total solutions. Either way this hints at the ability of the system to
tolerate faults. More fault tolerance can be achieved by using more than one
workpool, preferably in different computers, so the crash of one machine will not
destroy all the partial solutions.

4 Conclusion

We proposed the Iterative Multi-Agent (IMA) problem solving method that involves
the following activities: dividing the problem into sub-problems, dividing the
knowledge to solve the sub-problems among multiple agents, and having a set of
partial solutions. Then an iterative process starts, in which agents make changes to the
solution of each sub-problem if necessary. The design of the system mimics the
behavior of human experts collaborating to solve a problem. But here more than one

possible solution is considered. Each expert looks at the problem from his perspective,
and tries to solve his sub-problem by using the resources made available to him.
Conflicts may arise, and then each expert has to modify his part of the plan in the
hope of making it compatible with the other parts. This seems to be an intuitive
approach that works in practice. The two more important advantages of following this
guideline are a more natural mapping process for problems that can easily be
expressed in terms of interacting sub-problems, and in a reduction of the search space
size. One disadvantage of the IMA method is that in general there is no guarantee that
a solution will be found. Another disadvantage is that it may not be possible to find a
globally optimum solution when there is no authority with knowledge about the whole
problem. This could be tolerable in hard problems where finding a solution at all is
good enough.

This paper gave a practical example of co-operating agents that run in parallel and
take part in solving a CSP. The source code of the implemented system (SCSPS.java)
can be obtained freely by anonymous FTP from orion.cs.uregina.ca/pub/scsps or by
contacting the author.

For future we intend to apply the IMA method to other problem areas. Studying the
effects of changing and inconsistent knowledge in the agents is also of interest to us.
Making the system utilize a multi-processor machine or run over a network are other
worthwhile efforts, as they enable the tackling of even bigger problems.

Acknowledgements

Special thanks to Howard Hamilton and Scott Goodwin for their help and suggestions
for improving the paper. This research was supported by an NSERC Strategic Grant
(Hamilton).

References

1. P. S. Eaton, E. C. Freuder, "Agent Cooperation Can Compensate For Agent Ignorance In
Constraint Satisfaction", AAAI-96 Workshop on Agent Modeling, August 4-8, 1996,
Portland, Oregon.

2. J. Knopp and M. Reich, "A Workpool Model for Parallel Computing", Proceedings of the
First International Workshop on High Level Programming Models and Supportive
Environments (HIPS), 1996.

3. B. A. Nadel, "Constraint satisfaction algorithms", Computational Intelligence, No. 5, 1989.
4. B.J. Nelson, "Fault-Tolerant Computing: Fundamental Concepts", IEEE Computer, vol. 23,

July 1990
5. A. S. Tanenbaum, Distributed Operating Systems, Prentice-Hall International, 1995.
6. M. Yokoo, E. H. Durfee, T. Ishida, K. Kuwabara, "The Distributed Constraint Satisfaction

Problem: Formalization and Algorithms", IEEE Transactions on Knowledge and Data
Engineering, vol. 10, No 5, 1998.

