

DISCOVERY OF

CAUSALITY AND ACAUSALITY

FROM TEMPORAL SEQUENTIAL DATA

A Thesis

Submitted to the Faculty of Graduate Studies and Research

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in Computer Science

University of Regina

By

Kamran Karimi

Regina, Saskatchewan

July, 2005

Copyright © 2005: Kamran Karimi

i

Abstract

In this thesis, we present a solution to the problem of discovering rules from sequential

data. As part of the solution, the Temporal Investigation Method for Enregistered Record

Sequences (TIMERS) and its implementation, the TimeSleuth software, are introduced.

TIMERS uses the passage of time between attribute observations as justification for

judging the causality of a rule set. Given a sorted sequence of input data records, and

assuming that the effects take time to manifest themselves, we merge the input records to

bring potential causes and effects together in the same record. Three tests are performed

using three different assumptions on the nature of the relationship: instantaneous, causal,

or acausal. The temporal reversibility of a relationship in time is used to judge the

relationship as potentially acausal, while reversibility is considered as evidence for

judging the relationship as potentially causal. To visualise the attributes’ influence on

each other, the thesis introduces dependence diagrams, which are graphs that connect

condition attributes to decision attributes. We performed a series of comparisons between

TIMERS and other causality discoverers, and also experimented with both synthetic and

real temporal data for the discovery of temporal rules. The results show an improvement

in the quality of the rules discovered with TIMERS.

ii

Acknowledgements

I would like to express my gratitude to my supervisor, Dr. Howard Hamilton, for all

the help and guidance he has provided me with over the years. I appreciate his kindness,

friendliness, compassion, and sense of humour, as much as his clever and thoughtful

technical remarks. His high academic standards have helped me to greatly improve my

research abilities.

Many thanks to my PhD committee members, Dr. Cory Butz, Dr. Andrei Volodin,

and Dr. Yiyu Yao, for their helpful suggestions and constructive criticism. This work has

benefited greatly because of them. Thanks to Dr. Brien Maguire, head of the Department

of Computer Science, and Ms. Donalda Kozlowski, the departmental secretary, who often

helped me with paper work.

I also thank the Faculty of Graduate Studies and Research, the Department of

Computer Science, NSERC, and Dr. Hamilton for providing me with the financial

support needed to do this research.

Finally, thanks to my family and friends for their unconditional support. I am where I

am now because of the help that I have received from so many people in my life. I am

grateful to all of them.

iii

Post Defence Acknowledgement

I am grateful for the thoughtful, fair, and objective criticism and comments of the

external examiner, Dr. Oliver Schulte. His knowledge in multiple disciplines and his

questions and comments during and after the defence has resulted in many improvements

to the thesis. I also wish to thank Dr. Christopher Yost for presiding over the defence.

iv

Table of Contents

Abstract .

i

Acknowledgements .

ii

Post Defence Acknowledgement . iii

Table of Contents .

iv

List of Tables .

vii

List of Figures .

ix

Chapter 1 Introduction .

 1.1 Basic Definitions .

 1.2 Problem Statement .

 1.3 Contributions of the Thesis .

 1.4 Overview of the Approach .

 1.5 Thesis Outline .

1

1

3

7

9

17

Chapter 2 Background Knowledge .

 2.1 Temporal Discovery .

 2.2 Causal Discovery .

 2.3 Causality in Computer Science .

19

19

23

28

Chapter 3 Knowledge Discovery from Sequential Data

 3.1 The Representation of the Problem .

 3.1.1 Overview .

3.1.2 Problem Statement .

42

43

43

45

v

3.1.3 Temporalisation .

3.1.4 Causality and Acausality in TIMERS

3.1.5 Spatial Sequential Data .

 3.2. The Temporalisation Algorithm .

 3.3 The TIMERS Algorithm .

 3.4 (A)causality and (Ir)reversibility .

46

47

52

54

61

68

Chapter 4 Derivation and Presentation of Temporal Rules

 4.1 The TimeSleuth Software .

 4.2 Dependence Diagrams .

4.2.1 Definitions .

4.2.2 Pruning a Dependence Diagram .

 4.3 Temporal Rules as Prolog Statements .

4.3.1 Rules Governing an Artificial Robot .

4.3.2 Generating Prolog Statements .

78

79

92

93

95

96

96

101

Chapter 5 Experimental Results .

 5.1 Comparison with Other Approaches to Causal Discovery

5.1.1 The Problem and the Desired Output

5.1.2 Results with a Window Size of 1 .

5.1.3 Results with Larger Window Sizes .

5.1.4 Summary of Comparisons .

 5.2 Evaluation of TIMERS on Synthetic and Real Data

5.2.1 Using Classification to Generate Rules

5.2.2 Using Regression to Generate Rules .

5.2.3 Short-interval Temporal Data .

5.2.4 Spatial Data .

109

110

110

112

114

118

119

119

126

129

131

Chapter 6 Concluding Remarks .

 6.1 Applicability of the Approach .

 6.2 The Main Limitations of TIMERS .

134

134

136

vi

 6.3 Summary .

138

References .

141

Appendix A TimeSleuth’s Output in Prolog for Robot’s x Movements 151

vii

List of Tables

1.1 Four records that contain values for Outlook, Temperature, and Play 10

2.1 Differences between a Bayesian network and a causal Bayesian network 31

2.2 The (conditional) probability tables for the nodes of a Bayesian graph 33

2.3 The joint and marginal probabilities for the rain events 37

3.1 Temporalisation with the forward, backward, and sliding position methods . . 57

3.2 The effects of the window size on the size and accuracy of the tree 60

4.1 Three sample Prolog statements generated by TimeSleuth 102

4.2 Prolog operators and functions for planning . 103

4.3 Prolog rules modified for planning . 106

4.4 Prolog statements with certainty values . 107

5.1 The desired output for TimeSleuth, TETRAD, and CaMML 111

5.2 Rules discovered by TETRAD’s FCI algorithm (w = 1) 112

5.3 TETRAD’s rules with the PC algorithm (w =1) . 112

5.4 CaMML's results with non-temporalised records (w = 1) 113

5.5 TimeSleuth's results with non-temporalised records (w = 1) 114

5.6 TETRAD’s FCI algorithm with temporalised records (w = 2) 115

5.7 TETRAD’s PC algorithm with temporalised records (w = 2) 115

5.8 CaMML's rules with temporalised records (w = 2) . 116

viii

5.9 TimeSleuth's results with temporalised records (w = 2) 117

5.10 Rules by TETRAD’s FCI algorithm with temporalised records (w = 3) 117

5.11 Rules by TETRAD’s PC algorithm with temporalised records (w = 3) 117

5.12 Test results for larger window sizes . 118

5.13 Summary of experimental results . 118

5.14 TIMERS' results with the robot data. Verdict is causal 120

5.15 TIMERS’ results the weather data. Verdict is acausal 123

5.16 TIMERS’ results with CART on the robot data. Verdict is Causal 127

5.17 TIMERS’ results with CART on Louisiana weather data 128

5.18 Accuracy values for the robot learning problem . 130

5.19 TIMERS' classification results with C4.5 on the drilling data 132

5.20 TIMERS’ results with CART’s regression on drilling-sample data 133

ix

List of Figures

1.1 A decision tree for the records in Table 1.1 . 11

1.2 A portion of a temporal decision tree . 14

2.1 A Bayesian network for the fire rescue team example . 31

2.2 y and z are conditionally independent given x . 35

2.3 A probability tree representing two attributes . 37

2.4 Two possible causal Bayesian networks for the rain example 38

3.1 Temporal relationships between the attributes . 50

3.2 The sliding position temporalisation method . 58

3.3 Normal and temporal decision trees . 60

3.4 The TIMERS algorithm . 63

3.5 Possibilities of the accuracy intervals’ relative positions 66

3.6 Selecting the best type of relationship . 67

3.7 Examples of graphs with different time-reversibility properties 71

3.8 Different mappings from the original function to δ . 74

4.1 Contents of a .data file . 80

4.2 Contents of a .names file . 81

4.3 Attribute names and corresponding values . 81

4.4 TimeSleuth's input handling panel . . . 82

x

4.5 The Discretisation panel . 83

4.6 The Aggregation panel . 84

4.7 The C4.5Settings panel . 85

4.8 Exploring different window sizes . 87

4.9 The Recommend Panel . 88

4.10 Temporal layout of rules . 89

4.11 Statistics about the attributes . 90

4.12 Frequency of attribute usage in rules . 90

4.13 Rule usage and other related data . 91

4.14 An example dependence diagram . 92

4.15 A visual representation of the robot’s brain . 98

5.1 The pruned dependence diagram for the robot data . 122

5.2 Dependence diagram for the weather data . 124

5.3 The pruned dependence diagram for the weather data . 125

5.4 Dependence diagram with Air Temperature removed from the data 126

1

Chapter 1

Introduction

This chapter provides an introduction to this thesis. Section 1.1 introduces some of

the terms that are used in the thesis. Section 1.2 defines the problem that is being solved.

Section 1.3 identifies the main contributions made by the thesis. To provide a general

understanding of the solution, an overview of the approach is presented in Section 1.4.

Finally, Section 1.5 provides an outline of the remainder of the thesis.

1.1 Basic Definitions

Suppose we have a set of attributes (variables) that describe a system. We may wish

to know if the value of one attribute can be determined (predicted) by the values of the

other attributes. The attribute whose value is being predicted is called the decision

attribute, while the attributes whose values are used for prediction are called the

condition attributes. A rule that relates certain values of the condition values to a value of

the decision attribute is called a decision (or classification) rule. A decision rule takes the

form of: if {<relation between condition attributes’ values>} then (<decision attribute’s

2

predicted value>), where the condition attributes appear on the left hand side of the rule,

and the decision attribute appears on the right hand side. The placement of brackets is

arbitrary and meant to increase the readability of the rules. An example rule is

if {(a > 2)} then (b = true).

The data used to derive the rules are called training data. A rule can be executed when

the conditions in the left hand side of the rule are satisfied. If so, the rule yields the

decision attribute’s predicted value.

To determine the quality of the decision rules, we measure their accuracy. After the

rules are derived, we can try them on the same data to see whether or not the values

predicted for the decision attribute match the data. The results are called the training

accuracy. For example, if the rules correctly predict the decision attribute’s value for

training data 80% of the time, then the training accuracy is 80%. Alternatively, we can try

the rules on data that were not used to derive the rules, and obtain the predictive

accuracy. Predictive accuracy is usually lower than training accuracy because of the

general tendency of rules to match the training data better than other datasets. This

property is usually called overfitting. The data that are used to measure the predictive

accuracy are called testing (or unseen) data. Both training and predictive accuracy can be

used to measure the quality of the rules.

A set of rules designates a relationship between the values of the condition attributes

on one hand, and the value of the decision attribute on the other hand. In this thesis we

propose techniques for discovering the nature of this relationship.

3

1.2 Problem Statement

Given the sometimes-immense amounts of data gathered automatically by sensors in

domains of scientific research and engineering, understanding relationships among the

attributes can be a difficult undertaking. We may be interested in discovering properties

of a system that is either inaccessible or very complex. Example systems include the

weather, ocean currents, and environments on other planets. We may not have a theory

for explaining the observations, or the theory may be hard to apply, as in the case of

chaotic systems. In such cases, one can observe only some of the attributes, while the

others remain hidden. It may not be possible to change some attributes, so

experimentation may be limited or not possible.

This thesis proposes a method for answering the following question: Given an

ordered sequence of data, how is the value of a certain attribute related to the values of

other attributes? Is it potentially caused by them? Or are they merely observed together

(perhaps at the same time, or perhaps with time delays in between)? Is the relationship

reversible? In other words, given the next values, can we retrodict (predict in reverse) the

current values?

More specifically, we consider the problem of discovering a relationship, in the form

of a set of rules, from sequential data records. Each record contains the values of a set of

attributes. The records come from the same source and are sorted according to a temporal

(increasing/decreasing time) or linear (increasing/decreasing coordinate value) order. The

aim is to investigate the relationships between the attributes of a system whose internal

workings are not known. Such an investigation may be required when the system is a

black box with hidden internals, or is very complex, or there is no access to the system,

4

for example, because it is too far from us. In such a case, a formal analysis of the system

and the relationships implied by it may be hard or impossible.

It may also be hard or impossible to influence the system in any way. So we may not

be able to change some input parameters of the system to observe the effects on the other

attributes. If so, then we call the system uncontrolled. For the problem being solved here,

we do not require that the values of certain attributes be fixed in order to see how the

other attributes change. However, if the system is controllable, then the user may wish to

perform experiments by influencing certain attributes in a regimented fashion.

If experimentation is possible then we can distinguish between input and output

attributes, and we can change the input and observe the effects on the output. In such a

case, if the values of the input attributes are determined independently of any output

attribute, then we can restrict the set of attributes whose values are predicted (the decision

attributes), to include only the output attributes.

An example problem with an uncontrolled system is that of predicting the weather.

The data may consist of value for several attributes, recorded every minute, hour, or day.

In this case, most if not all of the attributes are outside our control. Nonetheless, we may

want to predict the value of one attribute using the others.

A common assumption in rule discovery is that the value of a decision attribute

depends on the value of other attributes in the same record, often gathered at the same

time. In this thesis, we assume that the value of the decision attribute may be better

determined by referencing the values of condition attributes in the preceding or following

records. In our weather example, the temperature now may depend more on the wind

speed an hour ago than the wind speed now. With this assumption, the rules that are

5

created predict the value of a decision attribute at some time point, by referencing

observations made before and/or after that time point.

Considering that a sequence of data records has a direction of progression, i.e., the

order in which it has been sorted, the rules we derive from them can execute in forward

and/or backward directions relative to the sorting order. Such rules are called sequential

in general. In the weather example, the records are ordered temporally. If the data records

signify temporal events, as in the values of the attributes of a system observed over time,

then the resulting rules are temporal. Temporal rules imply potential causal or acausal

relations.

As will be seen in the thesis, we define causality according to a common sense

understanding of the term, but other definitions are possible. In the common sense

definition, causes always precede the effects temporally. To simplify the analysis we

assume that any time we see the causes we can expect to see the effects. Of course,

sometimes we may see the effects without first observing the causes. This is a syntactic

definition of causality, as we are only concerned with the form of a causal relationship,

and not it meaning or semantics.

In this thesis, when we refer to a relationship as causal if the decision attribute's

current value is determined by the value of at least one attribute observed in the past. This

view is in line with many people’s intuitive understanding of causality. When we refer to

a relationship as acausal, then we consider it possible that the decision attribute’s value is

not caused by other attributes’ values, but happens to be seen together, with some time

interval between them. There may be hidden common causes that are producing the

observed temporal pattern.

6

We represent a causal relationship with a causal ruleset, which is a set of rules where

in each rule the previous values of the condition attributes are used to predict the current

value of the decision attribute. Similarly, an acausal relationship is represented by an

acausal ruleset, where previous values of condition attributes may be used to predict the

value of the decision attribute, but, relative to the decision attributes’ time of appearance,

at least one condition attribute’s value should come from the a succeeding time step. In

both causal and acausal rule sets no rule references the current value of any condition

attribute.

As an example, it may be possible to predict the wind speed at any hour by using the

recorded value of the wind speed from the preceding or succeeding hour, but one value

may not be causing the other. In this case, the wind speeds at two consecutive hours form

a temporal pattern that could be the result of meteorological factors that have escaped our

observation. So the wind speeds are not independent of each other, but they have no

causal relationship.

Sequential data records can also take the form of a sequence of records collected

along a linear path through space, for example, along a road or going down a well. We do

not look for causality in such a non-temporal context because unlike the direction of the

arrow of time, which appears to point in one direction, one can traverse a spatial line in

either direction. Thus, there is no need to distinguish one direction as more significant

[39]. In a linear spatial domain, assuming the system is not changing during the

observation period, we could have observed the same data, but in reverse order, if we had

started from the other end.

7

As an example, suppose that we are moving along a straight road, and observe the tar

content of the asphalt every 2 metres. At the arbitrarily-named point 1, we measure the

tar contents to be 70%, and at point 2 (two metres away), it is measured to be 65%. The

result is the sequence of observations <…, 70%, 65%, …>. If we had started from the

opposite end, we would have observed point 2 before point 1, and the sequence would

contain the values in reverse: <…, 65%, 70%, …>. Observing events in reverse order is

not possible in a temporal domain.

1.3 Contributions of the Thesis

This thesis makes five primary contributions, which we identify in this section. They

are explained further in the text.

First, the thesis defines the problem of discovering sequential rules from sequential

data, where each sequential rule refers to condition attributes that appear in a record other

than that of the decision attribute. This rule discovery process can be performed in the

context of a complex, closed, or perhaps otherwise inaccessible system. A sequential rule

can be derived from sequential data records gathered from spatial (one-dimensional) or

temporal data. If the data are of a temporal nature, then the results are temporal rules.

Thus, according to our definitions, a temporal rule is a restricted type of a sequential rule.

Temporal rules are often created in a form that refers to previous or current attribute

values in order to predict the decision attribute’s value at a future time. The second

contribution of this thesis is a generalisation of the direction of time, that allows a

temporal rule to refer to condition attributes’ values that are observed in the preceding or

succeeding records relative to the record where the value of the decision attribute is

8

observed. Referring to the next records may not be suitable for real-time execution of

temporal rules, because when such rules are executed they are not able to give a verdict

concerning the current situation until sometime in the future. However, rules that refer to

the succeeding values are applicable in cases where stored temporal data is available and

rules with the highest possible training accuracy or predictive accuracy are desired. In

such a case, for most records, the future and past observations are available during

processing. Example applications are the repair of faulty observations, and the filling of

missing observations. For linear spatial data, the same technique can be used by

substituting notions of nearby previous and next locations (neighbourhood), for the past

and future.

The third contribution is the introduction of a set of tests to judge the potential

causality of a relationship that is expressed as a set of rules. It is often hard to ascertain

that there is a causal relationship between two events, so our judgment in this regard

should be considered as a hint. Knowing the nature of a relationship helps us to

understand, and possibly better control, the phenomenon that is under investigation. Our

tests can be applied to sequential temporal data.

Fourth, we show that the problem of temporal rule discovery is similar to that of

determining whether or not a relationship is time-reversible. The reversibility of a system

is of importance in fields such as automata theory, and especially in quantum computing.

Reversible processes exhibit unique characteristics. When done slowly, they require very

little energy consumption. They are also of essential value in quantum computing.

Verifying the reversibility of the processes in a system is thus of importance from both

theoretical and practical viewpoints.

9

The user may want to verify whether a process is reversible or not, but a formal

analysis may be hard or impossible. We determine the reversibility of a relationship in

simple sequences by attempting to predict a decision attribute’s value using only the

previous or only the next values of the condition attribute. By our definitions, a causal

relation can be reinterpreted as being irreversible, while an acausal relation can be

reinterpreted as being reversible. Our treatment of time, which allows us to reference

both the preceding and the succeeding records in the same rule, is more general than that

normally considered in the literature on reversibility of temporal relationships, where one

is assumed to be able to reference either the past or the future, but not both.

The fifth contribution is the presentation of a graphical method, called the

dependence diagram, to enable the user to view how the value of a decision attribute is

determined by the condition attributes. It provides information concerning the attributes

involved in the decision making process, and the degree of involvement. Decision rules

usually concern only a single decision attribute. When given a number of input attributes,

determining which one to choose as the decision attribute can be difficult. The user can

try different candidates as the decision attribute, and may want to know which choice is

best. A dependence diagram can help the user in this regard by making it easier to

understand the decision rules.

1.4 Overview of the Approach

Part of the solution that we propose to the problems outlined in Section 1.4 is

encapsulated in the Temporal Investigation Method for Enregistered Record Sequences

(TIMERS). TIMERS begins by pre-processing the data to make them ready for use with

10

conventional rule or tree discovery methods. Then rules are generated, and in the case of

temporal data, their quality (training or predictive accuracy) is used to form a judgement

on the causal or acausal nature of the relationship that they express.

TIMERS relies on a rule/tree generator for functioning. To demonstrate that the

algorithm works regardless of the underlying rule or tree generator, we perform

experiments using C4.5 [66] for classification, and CART [10] for both classification

and regression.

TIMERS allows the user to perform a number of tests, and based on the results,

decide on the nature of the relationship. The conditions that TIMERS requires for the

tests to be meaningful are that the data originate from the same source and be sorted. The

user must ensure that these conditions are satisfied before proceeding with the tests.

To provide an informal introduction to TIMERS, we proceed in three stages. First, we

describe the discovery of decision rules in general. Then we describe the discovery of

temporal decision rules. Finally, we explain how an analysis of sets of temporal decision

rules can form the basis for determining the acausality or causality of a relationship.

A common form of input in many data mining and machine learning problems is a

dataset consisting of a series of records or instances. Each record contains the value of

several attributes. An example dataset is shown in Table 1.1.

Table 1.1 Four records that contain values for Outlook, Temperature, and Play

Outlook Temperature Play

Sunny 25 Yes

Rainy 13 No

Overcast 20 Yes

Sunny 10 No

Table 1.1 contains records that show the values of the attributes Outlook,

Temperature, and Play. Extracting information from such records has been an active and

11

well established area of research, referred to as concept learning, classification, or

learning decision rules. The assumption is that there may be relations among the different

attributes in each record. In a classification problem, the aim is to determine the value of

the decision attribute, using the values of the condition attributes. For Table 1.1 we could

set the decision attribute to be Play and try to determine when we can play, by using the

values of Outlook and Temperature. The process of selecting a value for Play can be

performed by creating a decision tree or a set of decision rules. A decision tree is a tree

structure where at each node one or more attributes’ values are tested, and based on the

result, a branch is selected [56]. Following that branch, we may come to another node,

and perform another test. Finally we will reach a leaf, and then a value for the decision

attribute is determined. Figure 1.1 shows an example decision tree.

Figure 1.1 A decision tree for the records in Table 1.1

In a decision rule, values of certain attributes are tested at the left hand side, known as

the antecedent of the rule. If all the conditions are met, then a value for the decision

attribute is proposed by the right hand side, or consequent, of the rule. An example

decision rule is:

if {(Outlook = sunny) and (Temperature > 20)} then (Play = yes). Rule 1.1

rainy

no
yes

overcast

sunny

yes
no

yes
no

Temp > 20

Outlook

12

Decision trees and decision rules are closely related, and one can create one

representation, given the other. C4.5, which is a widely referenced and commonly used

classification program, constructs decision trees first, and then derives decision rules

from them. Classical examples of data used for classification include the iris and soybean

datasets [8], which have been used for classifying the decision attribute (type of the iris or

sickness of a soybean plant).

Other related problems include discovering association rules, where the appearance of

certain values together are discovered, but no classification is performed. When

discovering an association rule, no single attribute is set as the decision attribute. A

prominent representative of this problem domain is market basket analysis [11], which

concerns the discovery of relations among different items sold together at a store. An

example would be the observation that certain food items are usually bought together.

The usual assumption in datasets for classification and association rule mining is that

their records are not related to each other in terms of: (1) the time of observation, and (2)

the source or origin. For example, in the market basket analysis (introduced in Chapter

2), the records come from different customers (different sources) and with no particular

order in time (no temporal ordering). The same applies for census data, where a number

of attributes are filled with values pertaining to different people or things, possibly over a

period of time.

These approaches do not require any constraints on the input dataset, and hence work

in more cases than the temporal approach presented here, but as we will see, given the

proper input, the temporal approach works better than the alternatives.

13

We take a classification approach, in that we investigate the relationship of a decision

attribute with other condition attributes. The traditional approach is to look for a

relationship between the decision attribute and other attributes within the same record.

One example is Rule 1.1, as previously presented. This method may not produce good

results if there is an inter-record relationship among the attributes, i.e., a relationship

where the value of one attribute is related to a value in another record. For an inter-record

relationship to be meaningful, we require that the records be produced from the same

source.

Given the assumption that the records are ordered, we can investigate to see if the

previous records affect the current value of the decision attribute. The past affecting the

present follows the normal direction of time. This direction coincides with our everyday

observations of causality. If using the past condition attributes results in better decision

making, then there may be a causal relation at work. Another possibility is that we may

be observing a temporal pattern, which is not necessarily causal. For example, two

attribute's values may be related to each other over time (first, one is observed, and after a

while the other one's value is observed), but neither is causing the other. They may both

have a hidden common cause that has escaped our attention. So the observation that a

temporally ordered relationship exists between some attributes by itself does not justify

the conclusion that causality is present.

With our approach, temporal decision-making can be performed either with a

decision tree or a set of decision rules. In either case the attributes should be qualified

with their time of observation, because the same attribute can appear more that once in a

rule, but at different times. A portion of a temporal decision tree [32] is shown in Figure

14

1.2, where yesterday's value of Outlook has been used to predict today's value of

Outlook.

Figure 1.2 A portion of a temporal decision tree

An example temporal rule is shown in Rule 1.2 below.

if {(Outlookyesterday = sunny)} then (Outlooktoday = sunny). Rule 1.2.

The time of occurrence of the decision attribute is called the current time. Extracting

such a rule requires an input dataset in which records are ordered temporally, and

observations are made on a regular basis, such as once a day. This may not necessarily be

the case in Table 1.1. Also, as can be seen in Rule 1.2, the decision attribute can

participate in the rule as a condition attribute at times other than the current time. Rule

1.2 only covers a span of two days, hence "today" and "yesterday" are enough to qualify

the attributes' time of observation. But if the rule involved more days, we use the current

time as a reference. In this case we would obtain Rule 1.3 below.

if {(Outlooktoday-1 = sunny)} then (Outlooktoday = sunny). Rule 1.3.

We say that a temporal relationship that is not causal is acausal. We also call it a

temporal association because the value of the decision attribute and the condition

attributes are associated together over time. This informal definition is different from the

sunny

Sunnytoday

Outlookyesterday

15

mainstream definition of a temporal association rule, where the attributes all appear at the

same time, but the association is valid only during a certain time interval [50]. Formal

definitions of these concepts will be presented in Chapter 3.

To investigate the causality or acausality of a temporal relation, we consider the

possibility that the decision attribute's value is determined by attributes not only in the

previous records, but also in the next records, or both previous and next records. One

example rule in this context would be Rule 1.4 below.

if {(Outlookyesterday = overcast) and (Outlooktomorrow = rainy)} then (Outlooktoday =

rainy). Rule1.4

Again, the attributes' time of observation could be set relative to the decision

attribute's time (current time) as in Rule 1.5(a), and in a more general notation, in Rule

1.5 (b), where time T is assumed to always denote the time when the decision attribute's

value is observed.

if {(Outlooktoday-1 = overcast) and (Outlooktoday+1 = rainy)} then (Outlooktoday = rainy),

Rule 1.5(a)

if {(OutlookT-1 = overcast) and (OutlookT+1 = rainy)} then (OutlookT = rainy). Rule

1.5(b)

The unit of time progression depends on the rate at which observations were made to

create the dataset. In Rules 1.4 and 1.5, the unit is a day, reflecting the assumption that

the data was gathered daily. As an alternative, one can read "T+1" as "next" and "T-1" as

previous, and use the same method for any "T±n" (read: n observations after or before).

16

To summarise this informal presentation, we assume three possibilities for a

relationship. (1) A relationship is non-temporal if the values of condition attributes and

the decision attribute are observed at the same time. In this case the relationship is best

described as a traditional decision rule. Such a relationship is labelled instantaneous by

our method. (2) A relationship is causal if only condition attributes from the past are used

to predict the value of the decision attribute at the current time. This temporal

requirement matches our intuitive understanding of causation. (3) A relationship is

acausal if events from the future are used to predict the decision attribute at the current

time. In such a relationship, the condition attributes’s values can belong to the past or

future, but at least one value belongs to the future.

To detect the nature of the relationship concerning a decision attribute, we perform

three tests to see if the relationship is instantaneous, acausal, or causal. In the

instantaneous case, we provide condition attributes from the same time as the decision

attribute, and extract decision rules from the data. For the causality test, we include

condition attributes from the past, and generate decision rules. For the acausal test, we

include condition attributes from the past, as well as the future, and then generate rules to

predict the decision attribute. The resulting rules' qualities (accuracy values) are then

compared to each other, and the method that results in highest quality is chosen as an

indication of the nature of the relationship.

The main drawback of TIMERS is the constraint that the input data must be produced

sequentially by the same system. As we will explain in Chapter 6, under certain

conditions our method can make mistakes in declaring a relationship to be causal or

acausal.

17

1.5 Thesis Outline

The material in the thesis is presented according to the practice and theory principle.

Namely, we have tried to introduced the concepts and methods informally first, and then

present them formally later in the text. This approach was chosen in the hope of making

the material easily understandable.

The remainder of the thesis is organised as follows. Chapter 2 overviews the problem

of temporal and causal knowledge discovery, and presents some existing approaches that

solve aspects of this problem. Section 2.1 overviews the main approaches for discovering

temporal patterns and relations. Section 2.2 describes how the concept the causality has

been approached from physical and statistical perspectives. Section 2.3 presents the main

approaches to causal discovery in computer science and introduces two programmes for

causal discovery that use different methods for causal discovery from TIMERS.

Chapter 3 presents the problem and the method in both formal and informal

languages. In Section 3.1 we define what we mean by sequential data, temporal causality,

and acausality. We also introduce temporalisation, which is the procedure we use to

merge consecutive records together in different ways. This procedure allows us to bring

the causes and the effects into the same record. As a result, we can use existing machine

learning and data mining tools, which ordinarily do not search for relationships between

records. Section 3.2 presents an algorithm for temporalisation, and Section 3.3 presents

the TIMERS algorithm. Section 3.4 shows how by measuring the acausality or causality

of a relation we are determining the reversibility or irreversibility of the system that

generated the input data.

18

Chapter 4 describes the generation and presentation of temporal relations, which are a

special form of sequential relations. Section 4.1 introduces TimeSleuth, the software that

implements TIMERS. Section 4.2 introduces the dependence diagram, which is a

visualisation method for better understanding the relationships among attributes in

TIMERS’ output. These diagrams are meant for human use. In Section 4.3 we show how

temporal classification rules, converted to Prolog [80] statements, can be used for

planning purposes.

Chapter 5 presents the results of experimenting with the TIMERS method. Section

5.1 compares TIMERS with other causal discovery software. TIMERS accepts a more

limited type of input than other causality discoverers described in the thesis, but TIMERS

can achieve higher accuracy than other method on that kind of input. In Section 5.2 we

apply classification and regression to temporal and spatial data. We show that regression

and classification give consistent results. The similarity between temporal data and sorted

one-dimensional spatial data is explored in this section by experiments on spatial data

obtained from a well-drilling dataset.

Chapter 6 discusses advantages and disadvantages of the proposed method and

summarises the thesis. Section 6.1 describes when the introduced method can be applied.

Section 6.2 details the strengths and limitations of TIMERS in the light of the lack of

agreement on the concept of causality, and the consequent absence of an objective

measure for determining causality. Section 6.3 summarises the findings of this thesis.

19

Chapter 2

Background Knowledge

In this chapter, we present some of the major tendencies and research areas in the

subjects of discovering temporal and causal relations. Section 2.1 is concerned with

approaches to discovering temporal rules, relations, or patterns without any claims as to

any possible causality. In Section 2.2 we show that no clear consensus exists regarding

the definition of causality. However, we see a general trend towards computable models

of causality. Section 2.3 discusses the major approach in computer science to discovering

causality, which is based on causal Bayesian networks. We introduce two different

programmes, namely TETRAD and CaMML and demonstrate how they work by using

examples. These programmes are used for comparison purposes in Section 5.

2.1 Temporal Discovery

The arrow of time is a unidirectional part of the spacetime continuum, as verified

subjectively by the observation that we can remember the past, but not the future, or that

we get older, but not younger. Objectively, there are a number of physical phenomena

20

that point to this special property of time. A prominent example is the entropy of any

closed system, which cannot decrease [23].

Temporal data are often represented as a sequence, sorted in a temporal order.

Examples of studies of sequential data and sequential rules are given in [3, 20, 69]. For

example, in [20], the authors provide a genetic algorithm solution to the problem of

detecting rules that manoeuvre an airplane that is being chased by a missile in a two

dimensional space. Discrete attributes such as speed, direction of the missile, turning rate

of the airplane, etc. are measured during 20 time steps. It is assumed that after 20 steps

the missile will stop the chase. The rules discovered in that paper form part of a plan, and

the genetic algorithm changes parts of the plan to make them better suited to solving the

problem. The rules are then used in a simulator to measure their effectiveness. Time is

obviously the sequencing factor in this example.

There are a number of general fields in the study of sequential data. A time series is a

time-ordered sequence of observations taken over time [6, 12]. An example is the series

of numbers <1, 3.5, 2, 1.7, …>. In a univariate time series, each observation consists of a

value for a single attribute, while in a multivariate time series, each observation consists

of values for several attributes. Most research on time series has assumed the presence of

a distinguished attribute representing time, and numeric values for all other attributes.

Attempts have been made to fit constant or time-varying mathematical functions to time

series data [6]. A time series can be regular or irregular, where in a regular time series

data are collected at predefined intervals. An irregular time series does not have this

property, and data can arrive any time, with any temporal gap in between. A deterministic

time series can be predicted exactly, while the future values in a stochastic time series

21

can only be determined probabilistically. The former is a characteristic of artificial and

controlled systems, while the latter applies to most natural systems. Simple operations

like determining the minimum or maximum values of certain attributes, finding trends

(such as increases or decreases in the value of stocks), cyclic patterns (such as seasonal

changes in the price of commodities), and forecasting are common applications of time

series data.

Many approaches to the discovery of rules from time series data involve pre-

processing the input by extracting features from the data. Global features include the

average value, or the maximum value, while local features include an upward or

downward change, or a local maximum value [30]. Another example of discovering

temporal traits by pre-processing time series data is the discovery of increasing or

decreasing trends before rule extraction [27]. While the study of time series is pursued

widely, Keogh argues that the common method of using a window to extract information

from a time series may not be useful or even meaningful, as similar results can be

obtained from a randomly generated time series [51].

In [61], the phrase multiple streams of data is used to describe simultaneous

observations of a set of attributes. The streams of data may come from different sensors

of a robot, or the monitors in an intensive care united, for example. The values coming

out of the streams are recorded at the same time, and form a time series. The data

represented in Table 1.1 is an example of multiple streams of data, where three attributes

are observed over time. In [54], an algorithm is presented that can find rules (called

"structures" by the authors) relating the previous observations to the future observations.

22

Such temporal data appear in many application areas and a good overview can be found

in [67].

An event sequence is a series of temporally ordered events, with either an ordinal

time attribute (which gives the order but not a real-valued time) or no time attribute.

Each event specifies the values for a set of attributes. A recurring pattern in an event

sequence is called a frequent episode [53]. Recent research has emphasised finding

frequent episodes with varying number of events between the key events that identify the

event sequence. Algorithms such as Dynamic Time Warping and its variants measure the

similarity of patterns that are stretched differently over time [43]. These methods have

not been applied to searching for relations in causal data. No claim is made as to whether

or not they represent causal relationships. The main difference between an event

sequence and a time series is that a time series is a sequence of real numbers, while an

event sequence can contain attributes with symbolic domains.

A market basket is traditionally defined as a set of Boolean attributes, each specifying

if a particular item exists in the basket or not [10]. For example, given three products A,

B, and C, an item can be <1, 1, 0> which means that the buyer picked products A and B

but not C. In market basket research, the aim is to find associations (patterns) among the

attributes of interest. Unlike the frequent episodes or the time series, in this case there is

no interest in discovering temporal patterns, since it is assumed that the market basket

items, which form an itemset, come from different sources, thus one cannot assume any

meaningful order among the items. This assumption puts market basket research in a

category of its own. Market basket data can be used for the discovery of frequent

23

episodes if they are generated by the same system. [26] contains an extensive review of

the methods of discovering knowledge from sequential data.

Despite having different terminology, all the representations described so far in this

section have the common characteristic of recording the values of some attributes and

placing them together in a record. Time series, event sequences, and streams of data all

attempt to find temporal rules (called patterns, episodes, and structures, respectively)

from the input data. Each of these representations uses a different set of algorithms to

solve its problems.

2.2 Causal Discovery

Modern physics is not based on intuitive ideas about time: There is no universal

clock, and the only constant is the speed of light [22]. Each observer perceives time

differently according to his speed relative to another observer. Ordinarily, physicists

consider the speed of light to be an upper limit for the speed with which an event A can

cause another event B [23]. There are theories about particles that can move faster than

light. One example is the tachyon, which was first introduced by Feinberg [17].

In the macroscopic world, moving faster than light may lead to contradictions, as the

effect B can appear before the cause A. This possibility is a contradiction to the intuitive

understanding of causality, and leads to a paradox: if a person can move faster than light,

then perhaps he can return to his past and change the causes of his travel in time. An

effect happening before its cause is called backward causation. As shown in [79], some

philosophers do not consider this impossible or paradoxical. It is possible that in the

absence of free will, we could go back to our past and not change anything that interferes

24

with our time travel. An implication of this assumption is that since we are not able to

change anything, we would travel to the past again and again, and thus be stuck in a

never-ending time loop.

In this thesis we refer to apparent backward causation as acausality, and consider it to

imply the presence of hidden common causes. The effects of such a common cause are

spread over time, and so form a temporal association. This interpretation of the

philosophical notion of backward causation acknowledges the temporal characteristics of

the relationship, and avoids any temporal paradox.

A physical concept related to this thesis is that of time-reversibility of physical laws.

Most laws in physics are expressed in a time-reversible manner, meaning that they can be

applied in either temporal direction. An example is the relationship between force and

acceleration, f = m × a, which does not enforce any restrictions on the direction of time.

While the previous formula might suggest that the force f is caused by the mass and the

acceleration, we can re-arrange the formula to read a = f / m and interpret the formula as

saying that force causes acceleration. The fact that many physical laws do not exhibit

temporal asymmetry has prompted some researchers to consider them as incomplete

approximations [64]. Others assume that there are two distinct types of physical laws.

Time-symmetrical laws hold backwards in time, while asymmetrical laws are valid in

only one direction [4].

However, another possible view is that a formula such as f = m × a shows an

instantaneous physical relationship: the force at any one moment is related to the

acceleration at that same moment. In other words, they are created together and one

cannot exist without the other. An example shows why the common perception is that

25

force causes acceleration: when driving a car, pressing on the gas pedal may be

interpreted as exerting more force. The resulting acceleration in then considered an effect

of the force. However, changing the position of the gas pedal only starts a process that

changes the amount of fuel delivered to the engine, which then increases the force

generated by the engine. The instantaneous relationship between the force and the

acceleration remains, though the relationship between pressing down the gas pedal and

observing a change in speed is temporal (causal).

A physical event that is asymmetrical in time is a mug falling from the table and

breaking. This event is observed a lot more often than the reverse. This phenomenon is

explained by the second law of thermodynamics, which states that the entropy of any

closed system does not decrease. In physics, entropy by definition makes time one-

directional, as we define the direction of time to be that of increasing entropy.

In classical Newtonian physics, causality is well-defined. As exemplified in a

statement by Laplace, it was believed that if one knows the initial states of all the

particles in the Universe, plus the applicable rules, one can predict the future or retrodict

the past perfectly [59]. More specifically, given the current position value (x, y, z), the

current momentum vector p, plus the forces acting on a macroscopic particle, in classical

physics one can plot the trajectory of the particle and predict the future position and

momentum [59]. Quantum theory, however, has placed severe restrictions on causality in

the classical physics sense. According to the Heisenberg uncertainty principle, one cannot

know both the position and the momentum of a particle with arbitrary precision. More

precisely, ∆x × ∆p > 0, where the ∆ operator denotes the uncertainty in the value of its

operand [59].

26

There is another example of how quantum physics is in disagreement with the

intuitive understanding of causality. While in classical physics the interaction of a cause

and its effect requires spatial proximity, quantum physics allows apparently instantaneous

causal interactions between particles that are at arbitrary distances from each other. As an

example, given a set of two entangled electrons, measuring the spin direction of one of

them instantly determines the spin direction of the other one, thus establishing causal

non-locality [52].

Granger causality, used mainly in economics contexts, puts clear emphasis on

temporal precedence [19]. A Granger causal relationship exists when previous values of

some attributes improve the prediction of a decision attribute’s value. Suppose we are

observing two attributes xt and yt over time, and A is a set of attributes considered

relevant to yt. We say xt granger-causes yt if there is a natural number h > 0 such that

P(yt+h | A) < P(yt+h | A ∪ {xt, xt-1, …}), where P(a | b) is the probability of event a

happening, given that even b has happened.

For example, knowing the previous value of the attribute xt = “Was there a political

scandal today?” during the past few days may increase our ability to predict the value of

the attribute yt = “Does the stock market lose value today?”. Granger causality is subject

to errors. For example, if the event “person A leaves the building” is always followed 10

minutes later by “Everybody leaves the building” then Granger causality will consider

person A’s leaving the building as a cause for everybody leaving the building.

Statistics, which provides computational methods of judging causality, has become a

popular method of causal investigation. Probabilistic causality can be defined as follows.

A is considered to be a cause of B if we have P(B | A) = 1 and P(B | ~A) = 0, where P(B

27

|A) measures the conditional probability of B given A, i.e., the probability of event B

happening, given that event A has already happened [89]. This formula implies temporal

precedence of the cause with regards to the effect. In practice, however, this definition is

too brittle, and few real-world data would satisfy it, so one says that if P(B | A) > P(B |

~A) then A is a cause of B. An example of a weakness of this second definition comes

into view if A = seeing lightning, and B = hearing thunder. Suppose we hear thunder only

after seeing lightning, then we have P(B | A) > P(B | ~A), which would lead us to believe

that the act of seeing the lightning cause the hearing of thunder. For this reason in the

probabilistic approach there is an added assumption that there should not be any hidden

common causes at work. In this example, the lighting and the thunder are created at the

same time by a discharge of electricity.

Temporal order does not necessarily exist in statistics. In our description of the

statement P(B | A), event A was considered to have already happened, but this

consideration does not mean that every conditional probability implies a temporal

ordering. Bayes’ rule states P(B | A) = P(A | B) × P(B) / P(A). In the left hand side of the

equation event B is assumed to have already happened, while in the right hand side event

A is assumed to have happened. In other words, using algebraic manipulation we can

change the order in which the events are supposed to have happened, and thus reverse the

original, and possibly natural, temporal order of the events.

When a conditional probability value expresses a reverse temporal ordering, then it is

called the likelihood [90]. Suppose we create a model M from some data D and then

measure the conditional probability of the data given the model P(D | M). Since the data

existed before the model, this probability is called the likelihood of D given M, and

28

indicates reversing the temporal order because now the model explains the data, instead

of the other way around. For more discussions about discovering causality, especially

from a statistical point of view, refer to [18, 28, 44, 78, 85].

2.3 Causality in Computer Science

Automatic discovery of causal relations among a number of attributes has been an

active research field. More specifically, automated methods have been applied to

determining whether or not the value of an attribute is caused by the values of the

condition attributes.

The prevalent approach to the discovery of causality is to consider the problem to be

that of creating a graph, where the parent nodes denote causes, while the children denote

effects. Conditional independence plays a great role in the construction of these causal

graphs. Two tools that were designed for performing unsupervised search for causal

relations are TETRAD [70] and CaMML [42, 82]. They look for relationships among all

attributes, resulting in a non-linear increase in running time as the number of attributes

increase. Although these tools were not designed for the exact problem of finding

atemporal and temporal rules from temporally ordered data from a single source, they can

be applied to this problem and provide the most appropriate existing techniques for

comparison purposes with our proposed approach.

Currently TETRAD is the de facto causality discoverer, and is widely discussed in the

literature. CaMML, has received less attention, and fewer technical details are available

for it.

29

TETRAD

TETRAD is a well-known causality discoverer that uses Bayesian networks [24, 62]

to find causal relations. Bayesian networks are directed acyclic graphs that represent the

conditional dependency of the attributes. A Bayesian network uses conditional

probability distributions at each node [25]. It is advocated in [84] that a Bayesian network

is a generalisation of a relational database. A causal Bayesian network, as used in

TETRAD, assumes that the links in the graph denote causal relationships. TETRAD at

first assumes that all attributes are causaly related, so at the beginning the causal network

is fully connected. Then it uses conditional independence tests to remove or revise edges.

The remaining edges form a causal Bayesian network. It has its own notation for

displaying the discovered causal relations. For example, A → B means that A causes B

and A ↔ B means that both A and B have a hidden common cause. Unfortunately

TETRAD's results are not always precise. A o→ B means that either A causes B, or they

both have a hidden common cause, A o−o B means that A causes B or B causes A, or they

both have a hidden common cause (usually considered to mean the same thing as co-

occurrence). This ambiguity about the exact nature of the relationship opens the door to

different interpretations of the results. From the examples in [9, 76], it appears that

TETRAD discovers causal relations that are subject to debate.

The main trend in causality mining involves using the statistical concept of

conditional independence as a measure of the control one attribute may have over another

[63]. For example, given the three attributes x, y, and z, if y is independent from z given x,

that is, P(y, z | x) = P(y | x), then we can conclude that y is not a direct cause of z. In other

words, x separates y and z from each other. This basic concept is used to build Bayesian

30

networks, which show the conditional dependence of attributes as arcs. These arcs are

then interpreted as signifying causal relations and the resulting Bayesian network is

considered causal.

A joint probability is the probability of two or more events happening together, as in

P(a, b). A marginal probability distribution is the probability of some events happening,

while ignoring the other events. P(a), which ignores the attribute b, is a marginal

probability value. In constructing a Bayesian network, we simplify joint probability

distributions by using products of marginal probability distributions and conditional

probabilities. As a simple example, P(a, b) can be written as P(b | a) × P(a). In this case

the corresponding Bayesian network is a graph consisting of two nodes a and b, where a

is the parent of b (node a points to node b), and there is a directed link from node a to

node b. Bayesian networks are acyclic.

In general, the chain rule of probability is written as P(x1, …, xn) = P(xn | xn-1,…,x1) ×

P(xn-1 | xn-1,…., x1) × … × P(x2 | x1) × P(x1), where × denotes multiplication. This formula

can be simplified when we have information about the conditional independence of the

attributes, which can be either given by the user, or computed from the data. For

example, suppose we want to determine what causes the city’s fire department to send

out a fire rescue team to a home. We represent this event with r. A user can come up with

a number of possibilities for the causes. The main cause can be identified as the home’s

alarm system a, which in turn may be caused by a fire f or by an accident t. But it also

possible that the alarm system is not working, and the rescue team was sent because of a

passer by’s phone call c. A graph showing these relations comes is shown in Figure 2.1.

31

Figure 2.1 A Bayesian network for the fire rescue team example

Such graphs appear in Belief networks, probabilistic networks, knowledge maps, and

causal networks [68]. This Bayesian network implies the property that any node is

independent of its non-descendant nodes when conditioned on its parents. This

implication is called the causal Markov condition [91]. Table 2.1 summarises the

differences between a Bayesian network and a causal Bayesian network. As can be seen,

the move from a Bayesian network to a causal Bayesian network mostly involves a

change of interpretation and terminology.

Table 2.1 Differences between a Bayesian network and a causal Bayesian network

Bayesian network Causal Bayesian network

An edge denotes a

probabilistic dependence.

An edge denotes a direct causal

relationship.

A node is independent of its

non-descendants given its

parents (Markov condition).

A node is independent of its non-

descendants given its direct

causes (Markov condition).

The network is used for

probabilistic reasoning.

The network is used for causal

inference.

Nodes t, f, and p do not have any parents, so their probabilities can be expressed by

the marginal probabilities P(t), P(f), and P(p). Event a, on the other hand, has two parents,

so its probability distribution is determined only by referring to the parents t and f. Using

the chain rule of probability we have P(f, t, a) = P(a | f, t) × P(t |f) × P(f). Now we

f t

a

r

c

32

incorporate the conditional independence P(t | f) = P(t) as expressed by the network, and

we get: P(f, t, a) = P(a | t, f) × P(t) × P(f).

For all attributes, according to the chain rule of probability, also known as the

product rule or the multiplication rule [7], P(f, t, c, a, r) = P(r | f, t, c, a) × P(a, | f, t, c) ×

P(c | f, t) × P(t | f) × P(f). The assumption of conditional independence of each node from

other nodes, given the parents, allows us to make these substitutions: P(t | f) = P(t), P(c |

f, t) = P(c), P(a | f, t, p) = P(a | f, t), and P(r | f, t, c, a) = P(r | c, a), so can simplify the

joint probability formula: P(f, t, c, a, r) = P(r | a, c) × P(a | f, t) × P(t) × P(f) × P(c).

Intervention is of great importance in this method of causal discovery. By fixing a

node at a certain value, one investigates its effect on the descendent nodes. For example,

we can manipulate the graph of Figure 2.1 by setting the alarm to be on, and hence create

the new probability distribution: Palarm(f, t, c, a, r) = P(r | a, c) × P(c) = P(c, a, r). As can

be seen, an intervention removes the ancestors of the manipulated node. Pearl introduces

the do() operator for manipulation of nodes. Fixing a descendant node should have no

effect on its parents, which makes causality an asymmetric property by Pearl’s definition

because causality flows from parents to the children and not vice versa.

A graph denotes the order in which causality takes effect. In Pearl’s scheme, the

starting nodes take their values first, and then the descendants are affected. As an

example, an equation such as f = m × a by itself does not show causality, but in a graph

such as f → a, we know that f comes first.

We associate a conditional probability table with each node of a Bayesian network.

For this example we may have the following probability tables, as presented in Table 2.2.

Accident t, Fire f, and Call c are not conditioned on any other attributes, while Alarm a

33

and Rescue r are represented by conditional probability distributions. As can be seen, the

assumption of conditional independence reduces the size of the joint probability

distribution from the potentially intractable 2
n
, where n is the number of binary attributes.

At the other extreme, where all attributes are independent, we would need a table of only

size 2n to store the probabilities.

Table 2.2 The (conditional) probability tables for the nodes of a Bayesian graph
Accident Fire Alarm Rescue Team

True False True False Accident Fire True False Alarm Call True False

0.2 0.8 0.01 0.99 false false 0.01 0.99 false false 0.01 0.99

Call false true 0.9 0.1 false true 0.9 0.1

True False true false 0.9 0.1 true false 0.9 0.1

0.01 0.99 true true 0.99 0.01 true true 0.95 0.05

Each row in a conditional probability table should sum to one. A node with no parents

has a table with a single row, which contains the prior probabilities of its values. By

definition, the prior probability of an event does not depend on other events. Conditional

probability tables can be either provided by a domain expert or computed from data.

Here is a general procedure for constructing a Bayesian network [68]:

Procedure P2.1:

1. Choose a relevant set of attributes X.

2. Choose an ordering for the attributes.

3. While there are attributes left in X,

a. Pick an attribute xi and add a corresponding node to the network

b. Set Parents(xi) ⊆ {xi-1, …, x1} to some minimal set of nodes already in the

net such that the conditional independence property P(xi | xi-1,…,x1) = P(xi |

Parents(xi)) is satisfied.

c. Define the conditional probability table for xi.

34

This procedure is simple and guarantees an acyclic graph, but the results depend on the

order in which the nodes are added.

Bayesian networks can be used to consider different possibilities. For example,

suppose that the rescue team is present. What is the probability that the cause was an

alarm and not a call? A posterior probability is simply a conditional probability, such as

P(A |B), where A has happened after (posterior to) B. We can use Bayes’ rule to discover

the posterior probabilities, as follows: P(a = true | r = true) = P(a =true ∧ r = true) / P(r =

true). A similar formula calculates P(c = true | r = true). Even though a and c are

considered independent, they become dependent when conditioned on the observation of

their effect r. For example, P(c = true | r = true ∧ a = true) is different from that of P(c =

true | r = true).

In a causal Bayesian network, the parents of a node are interpreted to be its causes,

and the children of a node are considered the effects. To help distinguish between a mere

association and causality, a causal Bayesian network measures the relationship of three

attributes. One attribute acts as the control for the two other attributes. Suppose that we

have three attributes x, y, and z. If the control attribute x separates the other attributes y

and z, then y and z are independent given x. In this case x is either the parent of y and z, or

x comes in between y and z, as in Figure 2.2. In all three cases y and z are not reachable

given x. If both z and y are parents of x, then these two causes are not independent, as

mentioned in the fire rescue team example. TETRAD generates a list of all the individual

links of a causal graph, from which the user can derive the graph.

35

 (a) (b) (c)

Figure 2.2 y and z are conditionally independent given x

The fourth possibility, that of nodes y and z pointing to node x (y and z are both

causes of x), would create a collider at node x. Each of the three possibilities in Figure 2.2

has a corresponding factorisation of the probability joint distribution according to the

Markov condition. For 2.2(a) we have p(x, y, z) = p(x) × p(y | x) × p(z | x). For 2.2(b), p(x,

y, z) = p(z) × p(x | z) × p(y | x), while for 2.2(c) we have p(x, y, z) = p(y) × p(x | y) × p(z |

x). The graph with the joint distribution that better matches the data is then selected to

represent the data. TETRAD can leave the edge connecting two nodes as undirected

when the data does not allow for a direction to be set. Alternatively, it may flag an edge

as contradictory when there is some evidence supporting one direction, and some

supporting the other direction.

Given a causal graph, the d-connectedness (dependence- or directional-

connectedness) criterion can be used to determine if two nodes are independent from

each other given a third node [63]. In this method independence and separation in the

graph are considered to imply each other. In Figure 2.2, y and z are d-separated given x.

One can generalise the d-separation (and d-connectedness) to sets of attributes by

defining the sets of nodes x and y to be d-separated (d-connected) given z, if every

member of x and y are d-separated (d-connected) given z.

x

z y

x

z y

x

z y

36

The notion of conditional independence as defined in statistics is devoid of time.

Pearl recommends that temporal information, if available, be used to place constraints on

the relationships among the attributes (if we know x always happens before y, then y

cannot be a cause of x) [63]. However, temporal order is not essential to the working of

such algorithms.

TETRAD is proven to give correct results if the input data satisfies the Markov

condition, as well as the faithfulness condition. A dataset generated from a set of causally

sufficient attributes satisfies the faithfulness condition if the probability distribution

entailed by it matches that of the graph that generated the data [92].

There has been work on introducing more temporal information in constructing

Bayesian networks, as described by Shafer in [74], where the concept of a causally

subsequent Bayesian network is explained (The variable x is subsequent to variable y

when y precedes it x). Shafer argues that a probability tree, such as the one depicted in

Figure 2.3 is more general than a Bayesian network. More details on Shafer’s work come

in [75].

Causal Bayesian networks are sensitive to the correctness of the input data. In other

words, a causal Bayesian network is as reliable as the prior data that was used to generate

it. Also, when presented with data that violate the original probabilities used to construct

the network, the inferences may be wrong. However, the main practical problem with

Bayesian networks is that constructing a network from observed data is an NP-Hard task

[13], and becomes increasingly time-consuming, or impossible, as the number and

combination of attributes increase.

37

Here is a simple example of how to generate a causal Bayesian network with only

two variables. The first event e1 is the probability of rain today, and the second event e2 is

the probability of rain tomorrow. We expect from experience that these two events be

related to each other, meaning that if it rains today, it is more probable to rain tomorrow.

Suppose we observe some weather data and construct the joint and marginal probability

table shown in Table 2.3.

Table 2.3 The joint and marginal probabilities for the rain events

 Rain tomorrow

(e2)

No rain tomorrow

(!e2)

Marginal probability

of raining today

Rain today (e1) 0.15 0.10 0.25

No rain today (!e1) 0.15 0.60 0.75

Marginal probability

of raining tomorrow

0.30 0.7

To generate a network representing the probabilities, we start with a node that denotes

event e1, and create its two child nodes, denoted as e1 and !e1. Then for each child node

we create further children to denote e2 and !e2, as shown in the Figure 2.3.

Figure 2.3 A probability tree representing two attributes

To create a causal Bayesian network in TETRAD we start from a fully connected

graph, where every node is dependent on every other node. We then prune the nodes as

we establish conditional independence among the nodes. After this phase TETARD

P(!e1) = 0.75

P(e1) = 0.25

P(e2 |e1) = 0.6

P(!e2 |e1) = 0.4

P(e2 |!e1) = 0.2

P(!e2 |!e1) = 0.8

P(e1, e2) = 0.15

P(e1, !e2) = 0.10

P(!e1, e2) = 0.15

P(!e1, !e2) = 0.60

38

chooses a direction for each remaining link based on conditional dependence values

obtained from both possibilities.

Here is how TETRAD handles the simple rain example. TETRAD starts with a graph

containing both events connected by a link. If e1 and e2 are independent, it removes the

link between them. It computes P(e1, e2) = 0.15, while P(e1) × P(e2) = 0.25 × 0.3 = 0.075,

and so P(e1, e2) ≠ P(e1) × P(e2), which by definition indicates that the events are not

independent. S we leave the link in place. Both possibilities for the direction of the link

are shown in Figure 2.4.

Figure 2.4 Two possible causal Bayesian networks for the rain example

 Now the programme has to decide on a direction. We compute the conditional

dependencies in both cases: P(e1 | e2) = P(e1, e2) / P(e2) = 0.15 / 0.30 = 0.5, and in a

similar fashion, P(e2 |e1) = 0.6. In this case it seems more plausible that e1 should be the

parent of e2 than the other way around.

We needed to compute both possibilities in the case of a simple example with two

attributes. In general, finding the best network is of exponential nature, and heuristics

have to be devised to create trees in practical time limits. Procedure P2.1 is an example of

such heuristic methods, but as we have already mentioned, it is sensitive to the order in

which the variables are added.

e1 e2 e2 e1

39

CaMML

CaMML (Causal Minimum Message Length) is a Minimum Message Length based

causal discovery system that creates a causal Bayesian network. It measures the

goodness-of-fit of a causal model to the data [82]. Given a set of observed attributes,

CaMML finds causal relationships between one or more causes and a single effect. As an

example, in CaMML's notation (A, B → C) means that A and B are causes of C.

CaMML tries to learn the best causal Bayesian structure to explain some observed

data, using a Minimum Message Length (MML) metric for selecting a model. It searches

the space of possible causal models using the Markov Chain Monte Carlo Method

(MCMC) [55], and finds the one that best explains the data. In a Markov process, the

transition from one state to the next depends on the current state only. In other words, any

transition in a Markov process does not depends on the history of the moves that lead to

the current state. A Markov chain is characterized by a transition matrix than gives the

probability of moving from one state of the system to the next one. Starting from an

initial state and multiplying by the Markov transition matrix enough number of times, we

settle in a final state. Monte Carlo methods work by simulating an unknown function

using probabilistic means. They sample values from a probability distribution and

compute a function at those points. In MCMC, to obtain a specific probability

distribution, one generates a Markov chain whose long-term equilibrium is that

distribution.

MML was first introduced by Wallace and Boulton [81] and is based on maximizing

the posterior probability of the model. If we want a good model M which is fitted to the

40

data D, then we want to maximize the posterior probability P(M | D). According to

Bayes’ rule we should maximize P(D | M) × P(M) / P(D). We recall that P(D | M) is the

likelihood of D given M. Since D is given, we consider P(D) a constant, so the model M

must be chosen such that the numerator is maximized. We follow the information

theory’s [77] method of taking the negative of the natural logarithm of the probability

values, and convert the problem to that of minimizing the expression –ln(P(D | M)) –

ln(P(M)). In information theory, this formula expresses the minimum length necessary to

encode the model M, which is –ln(P(M)), plus the minimum length necessary for

encoding any exceptions to the rules in the data, expressed by –ln(P(D | M)). Hence the

name MML.

We now consider the simple rain example. The calculations performed may not be the

same as those performed by CaMML, but the general outline is similar. For the rain

example, we first must define rules that state the rainy days to be independent (resulting

in two simple rules: e1, e2), or either event can cause the other one, expressed as either e1

→ e2 or e2 → e1. We now attempt to select one rule set from the space of rule sets {<e1,

e2>, <e1 → e2>, <e2 → e1>}. Since the size of the models are close, we ignore the model

M in the equation and minimize –ln(P(D | M)).

In the first case, we have two rules, and consider their average probability value as

the probability of the rule set. We calculate: P(D | e1, e2) = (P(e1) + P(e2)) / 2 = (0.25 +

0.3) / 2 = 0.225. From which we compute –ln(0.225) =1.49. Now we examine another

rule set and compute P(D | e1 → e2). To do so we add the correct predictions (P(e2 | e1) +

P(!e2 | ! e1)) and subtract the probabilities of wrong predictions (P(e2 | ! e1) + P(!e2 | e1)).

Note that this may result in values bigger than 1, but the formula will still work. In the

41

rain example we have: P(e2 | e1) + P(!e2 | ! e1) - P(e2 | ! e1) + P(!e2 | e1) = 0.6 + 0.8 – 0.4 –

0.2 = 0.8. We obtain –ln(0.8) = 0.22. For P(D | e2 → e1), we compute P(e1 | e2) + P(!e1 | !

e2) – P(e1 | ! e2) – P(!e2 | e1) = 0.5 + 0.86 – 0.5 – 0.14 = 0.72. We obtain –ln(0.72) = 0.32.

So MML also suggests that we should choose e1 → e2.

The main difference between TETRAD and CaMML is that TETRAD aims to first

discover the probabilistic dependency structure of the variables, and then infer a causal

model to explain the dependencies. CaMML, on the other hand, considers a model first,

and then sees how well the data can be fitted to it, as explained before.

There are some common characteristics for Bayesian learners such as CaMML and

TETRAD. One is that they consider all the available attributes in the process of causal

discovery. In other words, they try to find causal relationships among all the attributes,

making the problem exponentially harder as the number of attributes grows. We have

shown that this can result in very long execution times [38]. The other common

consideration is that the input records are considered to be independent of each other, and

no assumptions are made as to when or where they may have been obtained. The records

could have come from different sources or different times. Assuming no temporal

relationship among the records allows these approaches to work on many datasets.

42

Chapter 3

Knowledge Discovery from Sequential Data

In this chapter, we present our approach to the discovery of sequential rules, and

show how we can use tools that were not designed to handle temporal data to process and

generate temporal rules.

Section 3.1 presents the formal definition of causality and acasuality, and defines the

problem we are solving. We also introduce the form of input data appropriate for

investigation with TIMERS. This section explains how the data is pre-processed in

different forms, how rules are generated and their quality measured. Sections 3.2 and 3.3

present the temporalisation and the TIMERS algorithms along with other sub-algorithms

employed by them. In Section 3.4 we show how the problem of discovering rules

reference attribute values in different time steps is related to that of traversing an

automaton’s graph of state transitions in forward or backward directions of time. We

show that TIMERS can determine to what extend an automaton is reversible.

43

3.1 The Representation of the Problem

In this section we present the main ideas behind the TIMERS method, including a formal

definition of what is meant by causal, acausal, and instantaneous relations.

3.1.1 Overview

Imagine a person is faced with the problem of learning the effects of his or her actions

on a black box system. Given an unknown system with a set of knobs (inputs) and gauges

(outputs), the person starts by observing the position of the knobs and the gauges. The

knobs and gauges may be connected together, via feedback loops, which blurs a strict

input-output notion. These observations would allow the person to deduce the

relationships between the different input and output states. After a while, if possible he

may start manipulating the knobs and reading the output, to see if it is possible to set the

outputs to desired values.

As a more specific example, suppose a person can control the temperature of a

cylinder, and can measure the temperature T, pressure P, and volume V of the cylinder.

From the formula P = nRT / V, we know that at any instant, the three measurements are

related to each other. However, there will be a time interval between turning the knob to

increase the temperature, and the observation of the new values for pressure and volume.

This dependence is captured in any sequential data that is made of the observables of the

system, and one can say that turning the temperature knob causes the volume or pressure

to change.

44

The above scenario makes explicit the importance of the temporal order among

observations. As a side effect, we cannot mix data coming from different systems

together, as that would invalidate any strict temporal order among the observations. In

our method, any conclusion about the attributes’ temporal effects on each other is derived

directly from the data.

The problem we are considering is to classify the relation between a distinguished

decision attribute and a number of condition attributes as one of instantaneous, causal, or

acausal based on temporal data. To solve this problem we propose the TIMERS

algorithm. TIMERS assumes the passage of time between the input records, and differs

from the other methods in two main ways: First, it does not try to create a graph of causal

relations, where all attributes take part in a hierarchy of causal relationships. Instead it

focuses on the relationship between a decision attribute and the other attributes, to see if

there is a causal relation among them. It is possible to run TIMERS several times with a

different target (decision) attribute each time, but the results are not to be combined into a

graph (though as will be seen, we can combine the results into "dependence diagrams").

Second, it assumes that the input records are temporally sorted and come from the same

source. This temporal characteristic of the data is the basis for the justification of causal

discovery in the presented method.

While TIMERS is fast and can handle many more attributes in the record than other

methods [38], proper input is less widely available. However, when applicable, the results

are meaningful, because with temporal decision rules the user can answer questions about

"what" is related to what, as well as "how." For example, an attribute may appear in all

causal rules that determine the value of a decision attribute, implying a stronger

45

relationship than another attribute that appears sporadically. This idea is the basis for

dependence diagrams, as explained in Section 4.2.

Temporal sequences are often considered to be passive indicators for the presence of

temporal structure in data [1, 21, 53, 61], but when causal relations exist in the domain, a

temporal rule can be interpreted as a plan and executed. TIMERS’ implementation

optionally converts the output rules to PROLOG statements, which can then be executed

directly [34, 35].

3.1.2 Problem Statement

We now state the problem formally. Sequential data are formed by a series of records

that appear one after the other, and follow a definite order. In the case of observations

made from a single system, the order may be temporal, in which case the records appear

according to the time they were generated. We assume that a total of T observed records

are present in the input data D = {d1, …, dT}. In other words, we gather data during T

time steps. While we are using a set notation, we consider the order of the records in D to

be unchangeable.

Since we are interested in the attribute values over time, we distinguish the time of

observation of each attribute value in D by the first index. In practice this time stamping

may be explicit or implicit. We do not rely on explicit time stamping, and consider the

order in which the records appear to represent their time. For any t, 1 ≤ t ≤ T we

distinguish between the current time step t and the other time steps. The value of the

attributes at the current time step may depend on the attribute values that appear before or

after the current time step. We assume that a time step takes long enough for any changes

46

in the system to have become manifest. The time steps do not have to be of equal length.

If we consider the system to be an automaton, and each record to represent a state, then

each record is generated after a state transition, which may take different amounts of time

depending on the source and destination states.

Each record dt = <dt1,…, dtm> represents the values of m different attributes, taken

from the set of attributes V = {v1,…, vm}, which are observed at the same time step t. We

consider one attribute vj, 1 ≤ j ≤ m to be of special interest, and designate it as the

decision attribute. In many contexts, the decision attribute is selected by the domain

expert. Given the above data, the problem is to determine if the value of attribute vj is

causally related to the other attributes or not.

3.1.3 Temporalisation

We define the set

P = {dki | 1 ≤ k ≤ T, 1 ≤ i ≤ m}

to represent all observations made from time 1 to time T. For practical reasons, we

concentrate on a limited window size of w observations. For any given time step t, the

window includes observations in 1 time step, called the current time step, plus w−1

neighbouring time steps. The neighbouring time steps can appear before or after the

current time step. We assume that only the information in this window is relevant to

predicting the value of decision attribute vj. The window set

Pw(t) = {dki | t ≤ T − w + 1 & t ≤ k < t + w, 1 ≤ i ≤ m}

represents all observations in the window, starting at time step t and ending at t + w − 1.

Pw(t) merges a number of input records together.

47

When considering a window size of w, there are w possibilities for the position of the

decision attribute in Pw(t), ranging from position t to t + w − 1. We aim to reset the

positions in the merged records, so the time-indices start from 1. This resetting is done by

simply subtracting the value (t−1) from each field’s time step. The process of merging a

number of consecutive records together, which is called temporalisation, converts every

w consecutive observation in the original data to w temporalised records, such that

for 1 ≤ r < w, zr = {zki | p ≠ r, dpi ∈ Pw(t) & k = p − t + 1 & zki = dpi} ∪ {drj}.

j denotes the decision attribute’s index. zr is derived from Pw(t) with the following

modifications. First, the time steps are set to start at 1, no matter where in the input data

D the fields come from. Second, we do not include the values for the decision attribute

except in time step r. For every window set Pw(t), temporalisation produces w

temporalised records, one for each possible position of the decision attribute: 1 ≤ r ≤ w.

Each temporalised record contains m × (w − 1) + 1 fields. The “1” indicates the decision

attribute’s value. The other m−1 values of the record in which the decision attribute

appears are not included in the temporalised record. Since we generate w records for

every record t, 1 ≤ t ≤ T−w, the total number of records is w × (T − w + 1).

The above method is called the sliding position temporalisation because the position

of the decision attribute slides from the beginning of the merged record to the end of the

window.

3.1.4 Causality and Acausality in TIMERS

In the following formal definitions of instantaneous, causal, and acasual sets of rules,

R = {r1,… ,rn} is a set of rules generated to predict the value of a decision attribute. All

48

the rules have the same decision attribute, as returned by the DECISION() operator.

Hence, DECISION(r1) = DECISION(rn) = dat0. da is the name of the decision attribute

from the set of attributes V, and t0 is the time it was observed, where 1 ≤ t0 ≤ w. Since

the appearance of an attribute vi at different times usually denotes different values, the

temporal relation will have a bigger domain: Vt = {vji | 1 ≤ j ≤ w & 1 ≤ i ≤ m},

where w, the window size, indicates how many time steps are involved. All the condition

attributes that are used in a rule are contained in the set: CONDITIONS(r) = {at, …} ⊆ Vt

− { dat0}.

All attributes in CONDITIONS() have a time step as index, to distinguish the same

attribute observed at different times. We assume that DECISION(r) ∉ CONDITIONS(r).

In other words, an attribute at a given time cannot be used to predict its own value at that

time. Here we are concerned with the properties of sets of rules, not attributes, and

assume the rule sets not to be empty, that is, we assume that for any rule set R, ∃ r ∈ R,

such that CONDITIONS(r) ≠ ∅. If this condition is not met, then we have a prediction

for the decision attribute that does not depend on any condition attributes. We cannot

discuss the temporal characteristics of this single rule with no left hand side, so we will

not consider it any further.

Instantaneous. An instantaneous set of rules is one in which the current value of the

decision attribute in every rule is determined only by the values of the condition attributes

observed in the same record as the decision attribute. An instantaneous set of rules is an

atemporal one. Another name for an instantaneous set of rules is a (atemporal) co-

occurrence, where the values of the decision attribute are associated with the values of

the condition attributes.

49

Definition 3.1: Instantaneous. For any rule r in rule set R, if the decision attribute d

appears at time t0, then all condition attributes should also appear at time t0, i.e.,

R is instantaneous iff (∀r ∈ R, if dat0 = DECISION(r), then ∀at ∈ CONDITIONS(r), t =

t0).

Temporal. A temporal set of rules is one that involves attributes from different time

steps. A temporal set of rules can be causal or acausal. We exclude any condition

attribute that appears at the same time as the decision attribute so as to prevent a strong

instantaneous relationship from showing itself in the temporal tests' results.

Definition 3.2: Temporal. For any rule r in the rule set R, if the decision attribute

appears at time t0, then all condition attributes should appear at time t ≠ t0, i.e.,

R is temporal iff (∀r ∈ R, if dat0 = DECISION(r), then ∀at ∈ CONDITIONS(r), t ≠ t0).

We now define the two possible types of a temporal rule:

Causal. In a causal set of rules, the current value of the decision attribute relies only on

the previous values of the condition attributes in each rule [72].

Definition 3.3: Causal. For any rule r in the rule set R, if the decision attribute appears at

time t0, then all condition attributes should appear at time t < t0, i.e.,

R is causal iff (∀r ∈ R, if dat0 = DECISION(r), then ∀at ∈ CONDITIONS(r), t < t0).

Acausal. In an acausal set of rules, the current value of the decision attribute relies on the

future value of at least one condition attribute [46].

Definition 3.4: Acausal. For any rule r in the rule set R, if the decision attribute appears

at time t0, then no attribute appears at time t0, and for at least one rule, at least one

condition attribute should appear at time t > t0. i.e.,

50

R is acausal iff (1) ∀r ∈ R, if dat0 = DECISION(r), then ∀at ∈ CONDITION(r), t ≠ t0.

(2) ∃r ∈ R, if dat0 = DECISION(r), then ∃at ∈ CONDITIONS(r), t > t0.

A pictorial representation of the instantaneous, causal, and acausal relations is

provided in Figure 3.1. Condition attributes are represented by rectangles the decision

attribute is shown by an oval.

In an instantaneous relationship, the decision attribute and the condition attributes are

observed at the same time.

(a) Instantaneous relationship

In a causal relationship, the condition attributes occur before the decision attribute.

(b) Causal relationship

In an acausal relationship, at least one of the condition attributes occurs in the future.

(c) Acausal relationship

Figure 3.1 Temporal relationships between the attributes

Time

Decision attribute

Condition attributes

Time

Cause(s) Effect

Decision attribute

Condition attribute(s)

Against the natural direction of time

Hidden

common

cause(s)?

Possible condition

attribute(s)

Time

51

We also put emphasis of temporal precedence between the causes and the effect, and

use the ability to predict the value of the decision attribute to measure causality, which is

similar to the case of Granger causality. However, Granger causality does not consider

using future observations.

In a temporal context we look for rule sets that represent a relation R: S → {vt0j}. S ⊆

Vt – {vt0j}, where vt0j denotes the decision attribute at time t0. We consider S to be

minimal, if there is no S' such that S' ⊂ S and R: S' → {vTj}. In other words, S represents

the smallest set of attributes that can represent the relationship. If we cannot prove that

set S is minimal, then a discovered temporal relation may actually be equivalent to an

atemporal relation that results by eliminating “unnecessary” attributes. With this notation,

in an atemporal relationship we have R: S → {vj}, S ⊆ V − {vj}. In a temporal relationship

we have: R: S → {vTj}, S ⊆ Vt − {vt0j} & S ∩ (Vt − {vt01,…, vt0m}) ≠ ∅.

The last condition makes sure that some attributes from time steps other than t0 are used.

TIMERS performs three tests: One for the instantaneous case, one for the causal case,

and one for the acausal case. In each case we provide the rule discoverer with the

appropriate condition attributes. In the instantaneous case, only attributes from the

current time step are provided for rule generation. In the causal case, only attributes from

the preceding time steps are provided, and in the acausal case, attributes from the

preceding, as well as at least some attributes from succeeding time steps are involved in

rule generation. The resulting rulesets are then evaluated, and the one with highest quality

is considered to be the best description for the relationship. In this thesis we allow the

user to choose either the training or the predictive accuracy values of the rules as the

quality measure. It is possible to include other measures, such as the number of rules

52

needed for the rules (probably with lower number of rules being more desirable), in

addition to or in place of accuracy. We leave the choice of quality measure to specific

implementations.

When discovering acausality, the earlier versions of the TIMERS algorithm used the

condition attributes only from the succeeding time steps [37], while in the current version

TIMERS’ rules can refer to attribute values in both previous and next records. This

flexibility increases the likelihood of discovering better acausal rules, not only because

more cases are investigated, but also because of the common sense notion that events

happen gradually, and the neighbouring values in both directions are usually related to

the value of the decision attribute.

We define an order of conceptual simplicity among the three types of the relations,

with instantaneous being the simplest type of relationship, followed by acausality,

followed by causality. Hence, instantaneous <simplicity acausal <simplicity causal. The

intuition behind this ordering is that as we move from instantaneous to acausal and then

to causal, more claims are being made about the relationship. As a principle we try to

explain a relationship with the simplest possible type. As we will see, this ordering is

used to choose a winning relations type when the results of the three tests are close.

3.1.5 Spatial Sequential Data

So far we have focused on discovering rules that involve time, i.e. the condition

attributes appear at different times than the decision attribute. In this section, we take a

step beyond time and generalise our method to include one-dimensional rules.

53

Modern physics has established time and space as a unity, where one is inconceivable

without the other. However, time remains an anomaly because unlike the spatial

dimensions, it seems that one cannot move back in time, although experiments have

shown that at the particle level, this is in fact possible [23]. Discovering temporal

associations that predict the future, based on past observations, is possible, and one can

conceptually use the same idea for one-dimensional space as well. Our work has used the

distinction between moving back and forth in time as the basis of distinguishing causality

on one side, and acausality (or temporal co-occurrence) on the other side. We can explore

the same idea in a one-dimensional space.

Consider the problem of drilling an oil well. The well can be regarded as a one-

dimensional (linear) entity. As the drill is making its way through the ground, new points

are explored and registered. When we stop, we have a series of records that follow each

other along a line. While the data may seem to have been produced in a certain temporal

order, one could argue that if the drilling were started from the opposite side, then we

would be encountering the points in the reverse direction of time. It makes perfect sense

to analyse the drilling data in either direction, with the results being valid in both cases.

The linear order does not appear to offer any idea relevant to cause and effect, because

what happens to precede something in one direction will be following it in the opposite

direction. Thus, for spatial data, we refrain from labelling the type of relationship as

causal or otherwise, and concern ourselves with finding the best possible rules for

predicting the decision attribute's value. We still perform three tests, but the ruleset

selected by the tests is considered simply as the best ruleset for predicting the decision

54

attribute. No judgement is suggested concerning the nature of the relationships between

the attributes.

3.2 The Temporalisation Algorithm

Traditionally, to determine the value of a decision attribute we use the condition

attributes from the same record. Here we provide a simple example to explain the reasons

for temporalisation. Consider the following sequence of <position, direction> records:

<3, Left>, <2, Left>, <1, Right>, <2, Right>, etc. Each record indicates the current

position along a line, and the direction of movement at that position, assumed to be

determined randomly. Every movement changes the position by one unit to the left or

right. If the order of the records was ignored, the data would be atemporal. In such a case,

we could form atemporal rules, for example by using the current movement direction (the

condition attribute) to determine the current position (the decision attribute). The results

would be instantaneous rules, but we can tell intuitively that they probably would not

have good accuracy values, because there is no inherent relationship between a position

and the randomly-chosen direction of movement at that position.

To explore causality, we use the intuitive notion that the condition attributes' effects

take time to appear, and thus are seen in the later records. In this example, the next

position depends on the previous position, plus the previous direction of movement.

Given a temporally sorted sequence of records, we merge subsequent records into one

record, bringing the possible causes and the effect together by temporalisation. The

window size in temporalisation expresses our belief about how long it takes for effects to

manifest themselves. Temporalisation enables us to use standard rule learning tools and

55

programmes, which do not consider the passage of time, for the purpose of temporal

analysis of data.

An example record sequence with a window size of two in the forward direction of

time would be <3, Left, 2, Left>, <2, Left, 1, Right>, <1, Right, 2, Right>, etc., where

each record includes data from two time steps. Here we have the previous position, and

the movement direction, as well as the current values. Obviously, given the previous

position and the previous direction of movement, it is easy to determine the current

position.

After pairs of consecutive records have been merged, each temporalised record may

contain a cause and its effect. If the rules derived from these temporalised records result

in a better accuracy value than rules derived from the original records, then we declare

the relationship between the current position and other attributes as causal. In this

example, we can expect very good results because, assuming a deterministic world where

actions do not fail, when we know the past position and the past movement direction, we

can identify the next position with certainty.

However, we may be dealing with a temporal relation that is not causal. For this

reason, we should also consider the possibility that the next position and the next

direction of movement allow reliable prediction of the current position. A temporalised

record would now look like: <2, Left, 3, Left>. Of course, in this particular example, this

acausal hypothesis is not as good as the causal one, as knowing where we are in the

future is not sufficient to predict where we are now. There are two possibilities: currently

we can be to the left or the right of the future position. This example shows clear signs of

causality. As previously mentioned, at the current time we leave out all attributes with the

56

exception of the decision attribute. In the causal temporalisation, for example, the first

record would thus be <3, Left, 2>. This is to prevent a strong instantaneous relationship

from skewing the results of the causal and acausal tests.

The temporalisation technique prepares the data for rule extraction, and the final

judgment about the type of the relationship is based on the quality of the rules. The

quality can be measured using the rules' accuracy value. For the instantaneous test, no

temporalisation is performed. Alternatively, one could say we temporalise with a window

size of 1. For the causal (forward) test with a window size w, temporalisation involves

merging every w consecutive records together, and setting the decision attribute to be that

of the last record. For the acausality (backward) test, we attempt to predict values in the

current record from values in the following records. So to use the same method as for the

causal test, w consecutive records are merged and the decision attribute is set to be that of

the first record (the current time).

With any fixed window size w, the sliding position temporalisation algorithm first

places the current decision attribute at position one, and uses the next w −1 records to

predict its value. This corresponds to backward temporalisation in the previous versions

of TIMERS [37]. Then the current attribute is set at position 2, and the previous record

(position one) and the next w −2 records are used for prediction. This case has no

correspondence in the previous versions, as presented in [37]. This movement of the

decision attribute's position continues until finally it is set to w, and the previous w −1

records are used for prediction. This corresponds to forward temporalisation in the

previous versions.

57

As an example, consider four temporally consecutive records, each with four fields:

R1: <1, 2, 4, true>, R2: <2, 3, 5, true>, R3: <6, 7, 8, false>, R4: <5, 2, 3, true>. Suppose we

are interested in predicting the value of the last (Boolean) attribute. Using a window size

of 3, we can merge them as in Table 3.1. The decision attribute is indicated in boldface.

When it comes to the record involving the decision attribute, we do not consider any

condition attributes in the same record as the decision [37]. The Record.value notation

means that we are only including the decision attribute. For example, <R1, R2, R3.false>

would contain <1, 2, 4, true, 2, 3, 5, true, false>, where false is the decision attribute in

R3. This omission makes sure that minimum amount of data is shared between the

original (instantaneous) record and the temporalised record. In Table 3.1, there is a

temporal order between the records in the first column, but there are no such relationships

in other columns. The temporal order has been moved inside the temporalised records.

The temporalised records can thus be used by conventional data mining tools that ignore

any temporal order between the input records.

Table 3.1 Temporalisation with the forward, backward, and sliding position methods

Instantaneous. w = 1

(original data)

Forward (Causality).

w = 3

Backward (Acausality).

w = 3

Sliding position.

w = 3

R1 = <1, 2, 4, true> <R1, R2, R3.false> <R3, R2, R1.true> <R2, R3, R1.true>

R2 = <2, 3, 5, true> <R2, R3, R4.true> <R4, R3, R2.true> <R1, R3, R2.true>

R3 = <6, 7, 8, false> <R1, R2, R3.false>

R4 = <5, 2, 3, true> <R3, R4, R2.true>

 <R2, R4, R3.false>

 <R2, R3, R4.true>

For the acausal test, we can have a mixture of previous and next attribute values.

Given a window size w, p previous records and f future records can be involved, with the

decision attribute happening in between. So we have p + 1 + f = w. The "1" in this

equation indicates the location of the decision attribute at the current time. The

requirement is that f be at least 1 (at least one record from the future for the acausality test

58

to be valid), so we have 1 ≤ f ≤ w−1, and 0 ≤ p ≤ w−2. The decision attribute's position

slides in the merged records. It moves from being in the first position (no previous

records) to being in record number w−1 (w−2 previous records, 1 next record). The

sliding position temporalisation operator is presented in Figure 3.2.

The temporalisation operator Temporalise(w, pos, D, d) takes as input a window size

w, the position of the decision attribute within the window pos, the set of input records D,

and the decision attribute d, and outputs temporalised records. Di returns the ith record in

the input D. Field() returns a single field in a record, as specified by its first attribute. The

+= operator stands for concatenating the left hand side with the right hand side, with the

results going to the left hand side attribute. <> denotes an empty record.

for (i = 0; i ≤ |D| − w; i++) {
 temporalisedRecord = <>

 for(j = 1; j < pos, j++) // previous records

 temporalisedRecord += Di+j

 for(j = pos + 1; j ≤ w, j++) // next records
 temporalisedRecord += DI+j

 temporalisedRecord += Field(d, DI+pos) // the decision attribute

 output(temporalisedRecord)

}

Figure 3.2 The sliding position temporalisation method

This algorithm covers all three temporalisation methods: (1) For the instantaneous

test, we provide it with a window size of 1 and a position of 1. Alternatively we could

refrain from using the algorithm and simply employ the original input data. (2) For the

causality test, window size w would be any desired value bigger than 1, and the position

would be w too (last record). (3) For the acausality test, the window size could be set to

any value bigger than 1, and the position would change between 1 and w−1.

Temporalisation results in a set of records with no temporal relationship among them.

There is, however, an implicit temporal relationship within the fields in each

59

temporalised record. A traditional tree or rule generator considers all the attributes to be

available at the same time, and the Temporalise() function allows such rule generators to

still work, though the output of a traditional tree or rule generator does not consider the

attributes to have been observed at different times.

We can remedy this shortcoming at either the rule or tree generation level. At the rule

generation level the attributes in the output rules can be rearranged according to their

time of appearance. We would thus re-temporalise the output rules. Another approach is

to create a temporal decision tree instead of rules. Normal decision tree builders such a

C4.5 rank the condition attributes according to how suitable they will be for expanding

the tree at each step. For a temporal decision tree, the attributes should be ranked

according to their temporal order as well as their suitability for expanding the tree. This is

a stricter requirement than in the case of the rules, because unlike the rules, one cannot

reorder the branches in a tree without altering the tree. To sort the condition attributes,

they are partitioned according to their time of encounter. So attributes that are

encountered at time step t of the temporalised records go into set Vt. If at a node of the

tree a condition attribute from the set Vt is used, then the children of that node can only

use condition attributes from the sets Vj (j ≥ t), even if doing so makes the tree sub-

optimal. An example temporal decision tree is shown in the right part of Figure 3.3.

60

 (a) A normal decision tree (b) A temporal decision tree

Figure 3.3 Normal and temporal decision trees

To see the effects of the window size on trees generated by C4.5, we interpret the data

in a Letter Recognition database [8] as being temporal. The data consists of 20,000

records to classify the letters of the English alphabet. There are 16 condition attributes

that are actually seen all at the same time. However, we could look at the data as if

different parts were generated at consecutive time steps. The results are shown in Table

3.2, where a window size of 1 results in normal tree generation behaviour because all

attributes are assumed to have been produced at the same time.

Table 3.2 The effects of the window size on the size and accuracy of the tree

Before Pruning After Pruning Window Size

Size Error Size Error

1 26721 0% 25713 0.5%

3 6689 32.9% 6385 33.1%

6 6081 33.8% 5793 34.0%

8 6225 33.4% 5937 33.5%

16 1377 59.4% 1345 59.4%

In all the cases the data remain the same, and only their interpretation changes. In

other words, in each case we consider different condition attributes to have happened at

the same time. For example, with a window size of 4, each 4 neighbouring attributes are

supposed to belong to the same time step. With a window size of 5, there are 3 condition

attributes at each time step, with the last time step containing only 1 condition attribute.

The size and the quality of the tree change as the window size changes, because the

V2
V1 V2

V3

V3
V1

61

condition attributes will move from one time step to another. Consecutive window sizes

result in similar tree sizes and error values, hence some window values are not shown in

the Table. There is a sharp drop in the quality and size of the tree as we move into a

window value bigger than 1, because the algorithm cannot use the attributes as freely as

before. At the last window size, there is a drop in the quality of the tree, because some

important attributes could not be used ay more. Increasing the window size beyond 16

(the number of condition attributes) has no effect on the results. Building a temporal

decision tree in this way is a constraint satisfaction problem [60], where the choice of one

attribute limits the future choices in that branch of the tree.

3.3 The TIMERS Algorithm

To use TIMERS, the user chooses a number of input attributes, which come from data

D. They include the decision attribute in which the user is interested, da, and also the

condition attributes that will be used for classification. The other attributes present in the

data can be ignored. There is no need to temporalise the input data for testing the

instantaneous case, but for both causal and acausal cases the algorithm needs a window

size. Since it is usually hard for the user to determine the most appropriate window size

value, TIMERS accepts a range of values, from a starting window size α to an end value

β.

It is possible that the condition attributes have no significant relationship with the

decision attribute. In such cases, the classification rules will probably be of low quality.

To detect such an eventuality, the user provides a threshold accuracy value acth. The

resulting rule sets’ accuracy values are compared to this threshold value, and if all

62

accuracy values are lower, then the algorithm does not have reliable data, and refrains

from making any judgment.

TIMERS performs the appropriate temporalisation, generates classification rules, and

saves the best accuracy values for each of the causal and acausal tests. In deciding the

best method for describing the relationship between the decision and condition attributes,

the size of the rules in each rule set is saved along with the corresponding accuracy value

because the size of each rule set is considered as partially determining its simplicity.

After this phase, TIMERS decides on the best relationship type. In the simple case

where there is no overlap between the accuracy intervals, the method that results in the

best accuracy value will be chosen. If there is an overlap, then the complexity of the

methods and the size of the rule sets are considered, as explained later in this chapter. The

TIMERS algorithm appears in Figure 3.4 below. RuleGenerator() creates classification

rules from input data, and Temporalise() performs temporalisation on data given a

window size and a position within the window.

63

Input: A sequence of sequentially ordered data records D, minimum and maximum

temporalisation window sizes α and β, where 0 < α ≤ β, a minimum accuracy threshold acth, a
decision attribute da, and a confidence level cl. The attribute da can be set to any of the

observable attributes in the system, or the algorithm can be tried on all attributes in turn.

Preference determines whether the user prefers higher accuracy or a simpler method.

Output: A set of accuracy values and a verdict as to the nature of the relationship between the

decision attribute and the condition attributes. It could be instantaneous, causal, or acausal.

RuleGenerator() is a function that receives input records, generates decision trees, rules, or

any other representation for predicting the decision attribute, and returns the training or

predictive accuracy, as well as the number of rules generated.

TIMERS(D, α , β, acth, da, cl, preference)
{

 aci = RuleGenerator(D, da); // instantaneous accuracy; window size = 1

 for (w = α to β)
 for (pos = 1 to w)

 (acw,pos , ruleSizew,pos) = RuleGenerator(Temporalise(w, pos, D, da), da)

 end for

 end for

 acc = max(acα,α, …, acβ,β) // best causal test

 aca = max(acα,pos1, …, acβ,pos2), ∀ acx,pos, 1 ≤ pos < x // best acausal result

 // Is there is enough relevant information?

 if (max(aci, acc, aca) < acth) then stop.

 Verdict = "for attribute " + da + ", "

 Relation = RelationType(cl, (aci, ruleSizei), (aca, ruleSizea), (acc, ruleSizec), preference)

 case relation of

 INSTANTANEOUS: verdict += "the relation is instantaneous"

 ACAUSAL: verdict += "the relation is acausal" // an element from the future is present

 CAUSAL: verdict += "the relation is causal" // all condition attributes in the past

 end case
 return verdict.

}

Figure 3.4 The TIMERS algorithm

The memory space needed by TIMERS is computed as follows. For every run of the

Temporalise() operator, we get a dataset of |D| − (w − 1) records, hence the total number

of the output records created by the TIMERS algorithm is ∑
=

β

αw

1)-(w -|D| . For a

window size of 1, the dataset already exists (the original dataset). There is no need to

save each temporalised dataset after it has been used for rule generation. Thus there are a

64

maximum of |D| − (β −1) temporalised records during any iteration. Considering that the

number of attributes in each record is multiplied by the window size, the maximum

number of fields in the temporalised dataset will be (β − 1) × (|D| − (β − 1)) ×

LengthRec + 1. where LengthRec is the number of fields in each original input data record.

The expression (β−1) reflects the fact that we only include the decision attribute at the

current time. The 1 at the end of the formula reflects the decision attribute at that time.

Computation wise, the number of times that RuleGenerator() runs is equal to 1 +

∑
=

β

αw

w = 1 + [β × (β + 1) − (α − 1) × α] / 2. Hence, the time complexity of TIMERS is

polynomially related to the time complexity of the RuleGenerator().

TIMERS uses a statistical test to see if the results of the three tests are close together,

which results in a simpler method being suggested, even if its accuracy value is less than

the more complex method. As we will explain later, simplicity depends on both

conceptual simplicity (for example, an instantaneous relationship is conceptually simpler

than a causal relationship) and also the number of rules needed to express a relationship

(a lower number of rules denotes a simpler relationship).

In more detail, using the confidence level provided by the user in the cl parameter,

TIMERS constructs a confidence interval for the accuracy, as in Pr[-z ≤ f ≤ z] = cl.

Normalisation leads to Pr[-z ≤ (f − p) / (sqrt(p × (1 − p) / N)) ≤ z] = cl. In this formula, f

is the observed accuracy, N is the number of records, and p is the unknown actual

accuracy value. Solving this equation results in upper and lower bounds for p [83]. The z

values are determined by assuming a normal distribution. For example, a confidence level

cl of 90% implies z is 1.65. After computing the interval, TIMERS checks to see if the

65

corresponding intervals overlap. If they do, the method with the simpler type of

relationship is chosen. The intuition is that even if the simpler method has resulted in less

accuracy, it could have potentially produced the same or better results.

As an example, suppose with a confidence level of 90%, we have: the instantaneous

accuracy aci = 32.5%, intervalaci = [31%, 34%], the acausal accuracy aca = 35%,

intervalaca = [33%, 37%], and the causal accuracy acc = 37%, intervalacc = [35%, 39%].

We assume all methods resulted in the same number of rules. Because the confidence

intervals of the instantaneous method and the acausal methods intersect, instantaneous is

chosen because it is considered simpler. Then we consider the causal case, and since the

intervals of the instantaneous and causal methods do not overlap, the causal method is

chosen as the final verdict because of its higher accuracy value.

This example also demonstrates a special case where every two neighbouring

intervals are overlapping. In this case, starting with the first two or the last two methods

give different results. In the first case, as shown above, we choose the method with the

highest accuracy. Here we started the comparisons from the left to the right, or lower

accuracy to higher accuracy. But when starting from the right to the left (higher accuracy

to lower accuracy) we end up choosing the simplest possible method. We leave the

decision about which direction to follow to the user. In the TimeSleuth programme the

user can choose between "Prefer simpler method" (right to left) and "Prefer higher

accuracy" (left to right).

To clarify the previous paragraph, Figures 3.5(a) to 3.5(e) illustrate all possibilities of

the accuracy intervals and the winning method in each case. A circled number from 1 to 3

represents the accuracy values of one of the methods: instantaneous, causal, and acausal.

66

The accuracy values are sorted in an ascending order and the circled 3 represents the

highest accuracy value, which could have been produced using any of the instantaneous,

causal, or acausal methods. The brackets around each circle show the accuracy intervals.

We assume that in all three cases the same number of rules was generated.

(a) No overlap. Method 3 is the winner.

(b) Methods 2 and 3 overlap. The simpler of methods 2 and 3 is the winner.

(c) Methods 1 and 2 overlap. Method 3 is the winner

(d) All three methods overlap. The simplest method is chosen.

(e) Both pairs of neighbours overlap. If higher accuracy is preferred, 3 is chosen.

Otherwise 1 is chosen.

Figure 3.5 Possibilities of accuracy intervals’ relative positions

To determine which method/relation type to choose, we sort the accuracy values in

either an ascending order (preferring the method with higher accuracy) or in descending

order (preferring the simpler method). Figure 3.6 shows how the best method is selected.

2 31

2 31

2 31

2 31

2 31

67

Input: A confidence level cl, three accuracy values corresponding to the instantaneous, acausal,

and causal methods: aci, aca, acc, and their corresponding number of rules: nRulei, nRulea,

nRulec, a preference p for higher accuracy versus a simpler method.

Output: A verdict as to the best relationship type.

//info[].method contains one of INSTANTANEOUS, CAUSAL, or ACSUAL.

//info[].Accuracy is the best accuracy value.

//info[].interval contains the interval of the accuracy value, computed using a confidence value

Function SelectRelationshipType(cl, (aci, ruleSizei), (aca, ruleSizea), (acc, ruleSizec), p)

{

 // initialise the info[] structure

 forEach method ∈{ INSTANTANEOUS, ACAUSAL, CAUSAL }
 info[method] = (method , accuracymethod, ruleSizemethod, Intervalmethod =

 ComputeAccuracyInterval(accuracymethod))

 end forEach
 // if preference is given to higher accuracy, then start the search from lower accuracy values

 if (p = HIGHER_ACCURACY) then

 sort_Ascending(info[]); // sort in ascending order of accuracy.

 else // SIMPLER_METHOD

 sort_Descending(info[])

 winner = 1

 for (count = 2 to 3)

 if (overlap(info[winner].interval, info[count].interval))

 { // if there is an overlap, then choose the simpler method

 if (info[count].method <simplicity info[winner].method and

 info[count].ruleSize ≤ info[winner].ruleSize) then
 winner = count

 }

 else
 { // if no overlap, choose the method with higher accuracy

 if (info[count].accuracy > info[winner].accuracy) then

 winner = count

 }

 end for
 return info[winner].method //one of INSTANTANEOUS, ACAUSAL, or CAUSAL

 }

Figure 3.6 Selecting the best type of relationship

Starting with the two methods with the lowest (or highest) accuracy values, we test to

see if there is an overlap among their confidence intervals. If so, then we choose the

simpler method. The choice of the simpler method depends on both the conceptual

complexity of the relation as defined above, and also the number of rules that are needed

68

to express the relationship. In our method the more rules needed to express a relationship,

the more complex that relationship. This is reflected in our method in the following way:

If a conceptually simpler method overlaps with a conceptually more complex method, but

at the same time requires a bigger ruleset size, then priority is given to the method with

the smaller ruleset size. In other words, for a simpler method to over-rule a more complex

method, not only should there be an overlap between their accuracy intervals, but the

simpler method should result in a smaller ruleset size. While our assumed order of

complexity is subjective, including the size of rules adds an objective element to the

complexity measure. If there is no overlap in the accuracy intervals, we choose the

method with the better accuracy value. A winner is then selected among the first two

methods. This winning relation type is then compared with the third method to determine

the final method.

If needed, the algorithm in Figure 3.6 can also be used to select the best window size

among a number of accuracy values obtained in either the acausal or casual case. In that

case the order of simplicity is determined by the window size, with smaller window sizes

being simpler.

3.4 (A)causality and (Ir)reversibility

The input to the TIMERS method is a set of sequential records. In general, we can

represent the system under investigation as an automaton (function) with a transition

function δ(). It is usual to assume that a transition function takes as input a current state

and an event, where the event causes the state to change. The transition function then

looks like δ(q = current state, e = current event), and the result is one (if the automaton is

69

deterministic) or more (if the automaton is non-deterministic) next states, chosen from

the set of all the possible states Q.

In this paper, we do not see any need to distinguish between the current state and the

current event. The current state is made up of a number of attributes, and collectively

they lead to a change. In other words, the current event is considered to be part of the

current state. A domain expert may decide to designate certain attributes as events if need

be.

So a transition function is represented as δ(q) ∈ 2Q. In general, the reverse function

δ-1 does not exist. In other words, we can only move forward in time with δ, and knowing

the current state will not allows us to know the previous state. While this assumption is

often made in the literature on automata, it is rarely specified explicitly. For this reason, a

more appropriate name for δ would be a (unidirectional) “next state” function. In this

case δ-1 would be called a “previous state” function.

If the transition function δ-1 exists, then we call the automaton reversible. In general,

δ-1 exists only when the graph of the transitions has only one previous state for any

current state. A time-reversible automaton can be deterministic or not, as long as the

above condition is satisfied. Examples of a reversible function are Inc(a) = a + 1, and the

logical NOT operator, where we can know the original argument if we are given the

result. Examples of non-reversible functions are multiplication (given the output 6, what

where the original operands?) and the logical AND operator. We now present these ideas

formally.

Consider a set of attributes V = {v1,…vm}. We define the automaton X(Q, δ, Q0),

where Q ⊆ Vm is a set of current states, δ: Q → 2
Q
 is the transition function, and Q0 ⊆ Q

70

is a set of starting states. We do not include a ∑ set to denote the events for the sake of

simplicity of the notation, and consider it integrated into the states. If needed, we can

define a set Q′ as the set of states, and a set ∑ to include the events, and then define Q =

Q′ × ∑, and Q0 = Q′0 × ∑. The automaton is called time-reversible if and only if there is a

δ-1 function where

if ∀q ∈ Q, δ(q) ≠ ∅, then q = δ-1(δ(q)).

It is proven that any δ that is a one-to-one (injective) function is reversible [16]. Such an

automaton is backward-deterministic.

The above definition of δ-1 is different from an application of δ, where it is quite

possible to have q = δ(δ(q)) for some or all states q. In such a case we are still traversing

the graph of the automaton in the “forward” direction, while δ-1 allows us to re-trace a

path in the graph in the backward direction. δ-1 answers the question “where we would

have been before, if we wanted to be where we are now?.” Figure 3.7(a) shows an

example of a non-deterministic, but time-reversible graph. The graph is non-deterministic

because there are two transitions out of state q. Figure 3.7(b) gives an example of a non-

time-reversible graph, because when being in r, one cannot know with certainty where

the previous state was. This situation is similar to the two-dimensional space where we

could not be certain of how we ended up in a specific position (we could have moved into

the current position from left, right, up, or down).

71

(a) A non-deterministic, time-reversible graph.

(b) A deterministic, non-time-reversible graph.

Figure 3.7 Examples of graphs with different reversibility properties

At each transition, we are only considering the information that is available at that

point in time. So we do not remember the previous states or any events. Though

automaton X forms a Markov chain [41] (meaning the next state depends only on the

current state), a time-reversible automaton is not the same as a reversible Markov chain.

In a reversible Markov chain the probabilities of a transition between nodes i and j is the

same as those from node j to i [2], so the concept of a reversible Markov chain is devoid

of time.

 Reversible automata are closely related to the conservation of information and

energy in physics. They are universal computationally [58]. Reversible automata are of

important theoretical value, both in classical computer science where the problem of

determining reversibility is non-trivial to solve in general, and is shown to be undecidable

in the case of any cellular automata with a dimension of 2 or higher [31], and in quantum

computing, where it is a requirement that the computation be reversible before it can be

implemented by quantum computing methods [29] because the unitary operators [14] of

q

r

s

t

q r

s

t

72

quantum computing are by definition reversible. It is shown that the more reversible a

computation, that is, the more it is possible to recover past states from current states, the

less complex, less costly, and less energy-consuming, the computation will be [5]. These

results imply that there is an energy loss with information loss.

TIMERS’ treatment of reversibility is different from the common notion explained

above, as will be explained. TIMERS can generate rule sets that refer to both the previous

and next values relative to the decision attribute, as shown in the sliding position

temporalisation of Table 3.1. However, TIMERS can also use the forward and backward

methods of temporalisations, with examples in Table 3.1.

Temporal rules generated in the forward direction of temporalisation refer to the

previous observations to predict the current value of the decision attribute. This direction

is reversed for rules generated after a backward temporlisation, where the next

observations are used for predicting the current value of the decision attribute. The

implication of this property is that TIMERS can be used to compare the ability of the

condition attribute values to predict or retrodict the decision attribute’s value.

If we consider the rules in the forward direction to represent the function δ(), then the

rules that determine the value of the decision attribute in the reverse direction can be

represent the δ′() function. Given specific values for the condition attributes, one of the

rules in the δ() function will fire and predict a certain value for the decision attribute.

Running the rules in δ() on an input data sets allows us to gather statistics about how

often each rule is run.

In general, there are more than one rule that determine the same value for the decision

value. For example, the value val may be predicted or retrodicted by two or more rules.

73

In the δ-1() function, given a value for the decision attribute, we can assign a probability

value to each of the rules in δ(), representing the likelihood that it could have been fired

to produce that result. For example, suppose there are two rules for a certain value of the

decision attribute, val, and given a dataset D, 60% of the rules that predict that value use

rule number 1, while 40% use rules number 2. Now given that value val has been

predicted, there is a 60% chance that the condition attributes match the left hand side of

rule number 1, and a 40% chance that they match rule number 2.

 Thus we see that the δ-1() and δ′() functions are quite distinct from each other. δ-1()

does not contain the concept of running the rules backward in time, but the likelihood of

being in a specific state. δ′(), on the other hand, implies deriving and running rules that

refer to the attributes in a backward order of time. In other words, in δ′() we are still

using the values of the condition attributes to predict the value of the decision attribute,

and the rules are referencing values backward in time.

Traditionally, if the δ-1() function exists and is one to one, then we say we have a

reversible relationship between the values of the condition attributes and the value of the

decision attribute. TIMERS is not concerned with discovering this function, but it can

produce both δ() and δ′(), and derive their accuracy values. If δ() results in better

accuracy values than δ′(), then we define the relationship between the attribute values to

be time irreversible. Our definition of irreversibility is analogous to the definition of

causality, except we are using the forward temporalisation method, and not the sliding

position temporalisation.

Similarly, if δ′() gives better accuracy values than δ(), or they are close together, then

we call the relationship between the values of the condition attributes and the decision

74

attribute’s values as time reversible. Again, this is similar to the concept of acausality, but

here we only use the backward temporalisation methods.

Now we establish a connection between state transitions and the TIMERS’ sequential

data. We can consider each line of input data in the input to TIMERS to be a state of the

automaton, and the following line is considered the next state. Thus the input consists of

a specific list of state transitions in the automaton, as generated by δ. We consider the

normal direction of traversing a graph of state-changes to be the same as that of the

temporal order of encountering the states in TIMERS’ input. The reverse direction would

be the opposite of the normal direction. Creating decision rules in the forward direction

amounts to testing the causality of the data, while the decision rules that predict in the

backward direction are a measure for acausality. This ability of TIMERS is especially of

use for very complex or inaccessible systems where a formal investigation may be very

hard or not possible, and we have to use observational data.

In this context, the sliding position temporalisation method is too general a treatment

of time. For this reason we either reference the next attributes, or the previous attributes

in testing for the reversibility of the data. TIMERS generates both δ() and δ′() to make a

judgement about the time-reversibility of the relationship between the condition attributes

and the decision attribute.

To see how TIMERS’ δ() function is related to the original state transition function,

we note the following. Normally, a state is represented by the values of all the attributes,

while TIMERS uses classification of a single attribute. Suppose attribute vi is set to be the

decision attribute, and takes on values from the set Range(vi). The resulting decision rules

form the transition function δ: Q → Range(vi). In general, Range(vi) can be considered as

75

a merging (generalisation) of many states in V
m
, where attributes other than vi are

ignored. Since the left hand side of the rules in δ may also miss certain attributes,

generalisation is performed there too. Figures 3.8(a) and 3.8(b) show how in δ′ many

states in δ can be merged into one. In these figures the original state transition function is

shown with thinner lines, while δ is denoted with thicker lines. In δ we move from q to r

whenever in the original function we move from any state in q to any state in r. Consider

a decision rule such as if {(v1 = 1) and (v2 = 2)} then (v4 = 5), where v3’s value is not

important. The merged states in the right hand side of the transition in δ all have the same

value for the decision attribute v4 (v4 = 5), and the rest of the attributes are ignored. The

merged states in the left hand side all match the condition attributes in the left hand of a

rule in δ, i.e., they all have v1 = 1 and v2 = 2. We assume that each original state can be

applied to only one rule in δ. In other words, we assume that the rules in δ can be applied

unambiguously.

Figure 3.8(a) shows two rules in δ that predict the same value for the decision

attribute. So both rules have the same right hand side, as represented by the merged states

of r. Each rule generalises different states of the original state transition function, as

specified by the left hand side of the respective rule.

76

(a). An example of generalisation (merging) of states.

(b). δ is deterministic, but the original function may not be so.

Figure 3.8 Different mappings from the original function to δ

δ predicts the decision attribute’s value using the condition attributes. One would

expect δ′ to be obtained by re-tracing δ, which would lead us from the decision attribute’s

value back to the condition attribute’s values, similar to the inverse of the original state

transition function. This is not the case, and δ′ also predicts the value of the decision

attribute using the condition attributes’ values, but it refers to the next (and not the

previous) condition attributes to do so.

This distinction means that unlike the usual case with the graph of an automaton, we

should not literally go back along the δ transitions to create δ′. In other words, δ (from a

causality test) and δ′ (from an acausality test) have distinct graphs, and should be

traversed independently.

s

r
q

r (v4 = 5)

q

a

c

d

b e

a
d

c

d
b

f

g

77

As in Figure 3.8(a), each rule discovered in δ or δ′ creates a link in its respective

graph. Since we traverse the graphs in one direction only, there is no need for the graphs

to be one-to-one. The graphs can be traversed deterministically because we assume the

rules can be applied to the data with no ambiguity, so we always know where to go from

any given state by finding the rule that applies to the data. This characteristic is reflected

in Figure 3.8(b).

Considering that δ and δ′ are deterministic, it may seem that TIMERS allows us to

get rid of any original non-determinism in the state transition function that generated the

sequential data. Considering that each of δ and δ′ rule sets is associated with an accuracy

value that reflects how often the rules make a correct prediction, any non-determinism is

in fact reflected in the accuracy values of the rule sets, which could be less than 100%.

When given a series of sequential data, the user can choose a different decision

attribute when running TIMERS, and each choice may result in a different verdict. The

results are qualified with respect to the choice of the decision attribute, so one should say

δ is (ir)reversible with respect to a decision attribute with accuracy a%. This verdict is

then considered a hint at the (ir)reversibility of the original data.

78

Chapter 4

 Derivation and Presentation of Temporal Rules

In this chapter, we show how temporal rules can be derived from sequential data. In

Section 4.1 we introduce the TimeSleuth programme. TimeSleuth allows the user to select

the decision and condition attributes, do discretisation and aggregation, derive rules and

evaluate them, and represent the results in tabular forms. The tabular representations of

the rules summarise the relationships and lays them out in a temporal order, making them

perhaps easier for the user to understand [36].

Section 4.2 introduces a graphical method of representing rules, called a dependence

diagram. Such diagrams are meant for better understanding of the relations among

attributes and can represent any classification rule, and not just temporal ones. The

tabular representations of TimeSleuth focus on a single decision attribute at a time, while

a dependence diagram can show multiple decision attributes and their relationships

together. However, unlike the tabular representations, a dependence diagram does not

explicitly display temporal orders. A dependence diagram can be derived from the tables

of TimeSleuth, but not vice versa.

79

An alternative form of presenting a temporal rule is as a Prolog statement, and is

more suited for automatic usage. In Section 4.3 we introduce this possibility by way of an

example in programming an artificial robot.

4.1 The TimeSleuth Software

TimeSleuth implements TIMERS II and provides a graphical user interface for the

user to experiment with different settings and options. The user interface provides a

number of tabbed panels. In each panel the user can perform a specific operation. In the

Attributes panel, for example, the user selects the decision attribute(s) and the condition

attributes, while in the Recommend panel the user is offered clues as to the nature of the

rule set. TimeSleuth is written in Java and uses C4.5 as its rule generator. We chose C4.5

because it has become the default rule generator in the literature, and also because of its

source code availability.

We have modified C4.5’s source code so it can communicate with TimeSleuth,

accepting new input commands and outputting relevant temporal data. As a result the

user views C4.5 as integrated into TimeSleuth, even though C4.5 is called as an external

programme. The modified source codes for compilation under different operating

systems, as well as a precompiled version for use under 32 bit Microsoft Windows

products are included in TimeSleuth’s package. Detailed information about TimeSleuth

can be found as online help files in the TimeSleuth package.

TimeSleuth can be used, with reduced abilities, even if C4.5 has not been modified

for TimeSleuth. An option in TimeSleuth allows the user to inform it of this situation, so

80

it will not provide the non-modified C4.5 with options it cannot understand. In this case

TimeSleuth mainly becomes a graphical interface for C4.5.

C4.5's input consists of at least two files. A .data file which contains the values of

observed attributes, and a .names file that contains the names and possible values of the

attributes. In the data file each line consists of the value of the condition attributes that

determine the value of a single decision attribute. The decision attribute comes at the end

of the line. The values are separated by comas (,). An example .data file looks as in

Figure 4.1:

1, 0, 7, 8, 3, 4, 5

1, 0, 4, 13, 2, 5, 4

1, 0, 7, 8, 2, 4, 3

1, 0, 12, 0, 3, 3, 4

1, 0, 7, 8, 0, 4, 4

0, 0, 11, 8, 1, 4, 4

1, 0, 7, 8, 0, 4, 4

0, 0, 11, 8, 2, 4, 3

Figure 4.1 Contents of a .data file

There are 6 condition attributes (the first 6 attribute values in each line) and one

decision attribute in these data. The decision attribute takes on the values 3, 4 and 5. C4.5

accepts continuous, discrete, and symbolic input values. After the rules are generated,

C4.5 tries them on the contents of the .data file to measure the training accuracy value.

The decision attribute remains nameless in a .names file. By default C4.5 calls the

decision attribute “class.” TimeSleuth calls the decision attribute simply

"originalDecision." The range of the class come first in the .names file. The names and

ranges of the condition attributes then follows. A matching example for the data in Figure

4.1 would be as in Figure 4.2:

81

1, 2, 3, 4, 5, 6

x: 0, 1

y: 0, 1, 2, 3

teta: continuous

zeta: continuos

u1: 0, 1, 2, 3, 4

u2: 3, 4, 5

Figure 4.2 Contents of a .names file

In this file we see that the decision attribute can take on discrete values from 1 to 6,

and the names of the condition attributes are x, y, teta, zeta, u1 and u2. The mapping from

names to data values for the first line of data is shown in Figure 4.3.

x y Teta Zeta u1 u2 decision

1 0 7 8 3 4 5

Figure 4.3 Attribute names and corresponding values

In addition to .data and .names files, C4.5 can be provided with a .test file. The format

is exactly like a .data file. The contents of the .test file are not used during the tree and

rule generation phase, but are consulted to test the generated trees and rules to measure

the predictive accuracy of the tree or the rules.

All three files (names, data, test) should have the same name, and their extension

determines their type. An example would be weather.names, weather.data, and

weather.test.

Figure 4.4 shows a snapshot of TimeSleuth's window, showing the input handling

panel. After reading the input files, a list of the discovered attributes is presented to the

user. One can select a decision attribute by highlighting it. The user should inform

TimeSleuth about the presence of a .test file by clicking on the appropriate checkbox.

82

Figure 4.4 TimeSleuth 's input handling panel

The data used in Figure 4.4 and the following figures contains weather observations

gathered hourly. The decision attribute, "originalDecision" in TimeSleuth, is the Soil

Temperature.

Unlike with standard C4.5, in TimeSleuth the user can choose more than one decision

attribute. In such a case, C4.5 is invoked multiple times, each time with a different

attribute as the decision attribute. Using the original input files, TimeSleuth automatically

generates the appropriate .data, .test, and .names files which contain the temporalised

data and attribute names.

83

The user can choose to discretise the attributes using the "Discretisation" panel as

shown in Figure 4.5. Two methods are available. In Method one, the attribute's range of

values, as present in the input data file, is divided into segments of equal length. Method

2 takes into consideration the distribution of the values, and divides the range into

segments that contain the same number of values. This consideration ensures the values

in a denser region of the attribute's range are better represented. The steps taken in the

discretisation process are shown in Figure 4.5.

Figure 4.5 The Discretisation panel

The main assumption in TimeSleuth is that the program is provided with the values

that are observed at consecutive time steps. However, the user can instruct TimeSleuth to

use the aggregate value of an attribute in forming its rules. For example, the user may

decide to investigate the effect of the minimum value of the Air Temperature during a

certain window size, as shown in Figure 4.6. In such a case, TimeSleuth computes the

minimum, and uses that value instead of individual temperature values. Choosing the

aggregate function min() on x1 with a window size of 2 would result in the record: < x12,

x13, x14, x15, x22, x23, x24, x25, min(x11, x21)>. In the actual output file, the last attribute will

84

be the decision attribute because that is the format expected by C4.5. The effect of having

aggregate attributes is explained later, when we introduce the classification panel.

Figure 4.6 The Aggregation panel

The actual running of C4.5 happens in the C4.5Settings panel, as shown in Figure 4.7.

It allows the user to specify the location of C4.5's executable files and other related

directories. The user can also provide any optional run-time arguments to C4.5, even

though the arguments needed for TimeSleuth's functioning will be automatically

provided. Here the user can inform TimeSleuth if C4.5 has not been patched. The default

values provided in this panel make sure that C4.5 will function in a backward compatible

way, in case it has not been modified to work with TimeSleuth.

85

Figure 4.7 The C4.5Settings panel

If C4.5 is not modified, TimeSleuth can still be used to discover causal relations,

because it can still perform the temporalisation operation. However, there is a potential

problem here: C4.5 does not rely on the names of the attributes to identify them. Rather,

it uses their locations in the .data file. If TimeSleuth simply temporalisess the data and

copies the names in the .names file multiple times, then in the output the attribute's names

from different time steps would be confused. The temporally indexed attribute names as

in x11, x21, x31, etc. are not actually differentiated in a .names file, and all are called x1 by

C4.5. In other words, with an unmodified C4.5 we may not be able to distinguish the

same attribute at different time steps. If C4.5 has been modified, it actually outputs

temporal information in the rules by sorting the attributes according to their time of

appearance. So a rule might look like this:

IF {At Time 1: (x1 = 1) AND At Time 2: (x4 = 1) AND AT Time 3: (x1 = 5)} THEN

At Time 4: x5 = true

As seen later, TimeSleuth uses a tabular form to display the same information. If C4.5

is unmodified, then the user can instruct TimeSleuth to add a time index (_t<time>) to the

86

names it generates. So even though C4.5’s output may be temporally out of order because

no sorting is done, but it will still be understandable because the attributes from different

time steps are distinguishable. An example is the following rule: IF {(x1_t1 = 1) AND

(x1_t3 = 5) AND (x4_t2 = 1)} THEN x5_t4 = true.

The rules generated by c45rules have a confidence level. In order to filter the rules, a

user can specify a minimum confidence level, and only rules with higher confidence

values will be presented.

If aggregate attributes are present, then the output rules will include the keyword

"During Window" to make it clear that the aggregate value of the specified attribute is

seen during the whole window. A rule would look like: IF {During Window: x3 >= 0

AND At Time 1: (x1 = 1) AND At Time 2: (x4 = 1) AND AT Time 3: (x1 = 5)} THEN At

Time 4: x5 = true

C4.5 is supervised, because the user has to indicate the decision attribute, and also has

to tell C4.5 exactly which values will be taken on by the decision attribute. TimeSleuth

allows the user to specify more than one decision attribute, and can optionally extract the

values taken on by the decision attribute from the .data file. It outputs a warning message

if the .test file contains a value that is not seen in the .data file. These abilities turn

TimeSleuth into an unsupervised tool, as the user simply has to run the program with

minimal instructions as to the target attribute and the values it can have.

C4.5 consists of two main programmes. The first one, c4.5.exe, creates a decision

tree, and the c4.5rules.exe generates classification rules from this tree. There are two time

windows in the classification panel. The first one, called "Temporalising Window" is as

the name implies. Its value is used to temporalise the input data for both c4.5 and

87

c4.5rules. This value is then provided to c4.5rules so that it can sort the output

temporally. However, this value is not provided to the tree generation program, c4.5. So

the decision tree is generated with no regard to any window size. The value "c4.5 Time

Window" is meant to affect the decision tree, as explained in Chapter 3. This value, if

different from 1, should be the same as the temporalisation window size.

Finding a suitable window size for the data under investigation can be a challenge.

For this reason TimeSleuth allows the user to run it in a batch mode, wherein it tries

consecutive values for the window size. Training and testing accuracy can be employed

to guide the search. As shown in Figure 4.8, the user can decide to explore all values, or

stop after the accuracy has reached a threshold, or after the accuracy has stopped

improving. The running time is determined by C4.5's speed, which in our experiments

has been good, even for fairly large values of the window size.

Figure 4.8 Exploring different window sizes

After generating accuracy values using different methods, a decision has to be made

as to which method gives the better results. The Recommend panel performs this test.

88

The best values of each of the instantaneous, causal, and acausal tests are imported from

the cuasality panel into the recommend panel. Alternatively the user can fill in the fields

with appropriate values. The recommendation of a method can be offered based on both

the training and testing results, as shown in Figure 4.9 below.

Figure 4.9 The Recommend Panel

Though C4.5 generates rules for only a single decision attribute at a time, TimeSleuth

can handle multiple decision attributes by repeatedly calling C4.5. The user selects the

decision attributes, and different rule sets are created for each such attribute. TimeSleuth

presents the rules in different tables. The user has the choice to see the rules laid out

according to the time of each attribute’s appearance. It is also possible to summarise the

rules and see which attributes appear in what time steps. The user can optionally see

which attributes are actually used to classify the training and testing data. These

information are presented to the user in the Analysis panel.

In the analysis panel, the user can see how the selected window size has affected the

resulting rules. As shown in Figure 4.10, the user can opt to see the rules laid out

89

according to the time steps in which the attributes appear. This display shows how

important each attribute has been in forming the rules.

Figure 4.10 Temporal layout of rules

In Figure 4.11, we see that many of the condition attributes used to determine the

value of the soil temperature (originalDecision) come from previous time steps. In other

words, the current temperature of the soil depends on attributes measured previously.

Using standard C4.5 with such data obviously would not be as revealing. As seen in

Figure 4.11, the previous value of soil temperature appears in 84.3% of the rules, which

supports the common sense guess that the current temperature is related to the

corresponding observation an hour ago.

90

Figure 4.11 Statistics about the attributes

In Figure 4.12, TimeSleuth shows the frequency of attribute usage in rules that were

actually fired. In other words, the more a rule has been used (on test data or on training

data), the more important those attributes will be. Both training and testing results are

displayed. The two values are separated by ":".

Figure 4.12 Frequency of attribute usage in rules

Figure 4.13 shows some addition information about the rules and how they were

used. The column headers are self-explanatory.

91

Figure 4.13 Rule usage and other related data

In TimeSleuth the user can opt to have aggregate attributes. An aggregate attribute

contains the value of an attribute’s values combined with a function over the length of the

window. For example, one could have the Logical AND of the value of “Play” over 3

days as a single attribute. This new attribute replaces the “Play” attributes over the 3

days. In this example the result would be a “Yes” if it were possible to play in any of the

three days, and “No” if it was not possible to play in at least one of the three days that

appear in the temporalised record. An aggregate attribute is not considered to have a

specific time of occurrence, and so is ignored in the decision making processes as to the

nature of the relationship.

More precisely, an aggregate attribute is considered to have happened at time 0,

which is treated specially. The name of the aggregate attribute comes from the name of

the function and also the name of the original attribute. In the current example it would

be and(Play). All attributes except the decision attribute can be aggregated. TimeSleuth

supports the following aggregation functions: Sum(), Minimum(), Maximum(), Mean(),

Mode(), Median(), And(), and Or().

92

4.2 Dependence Diagrams

Here we introduce building diagrams that show the attributes' dependence on each

other. In a dependence diagram, attributes are connected together based on how much

they are actually used in predicting each other's values. A decision attribute depends on

another (condition) attribute if it appears in rules that are used to predict the decision

attribute. The rules can be causal, acausal, or instantaneous. A dependence diagram does

not make any distinctions in this regard. An example dependence diagram for the robot

data is shown in Figure 4.14 below. The data comes from an artificial robot doing a

random walk in a two-dimensional space, where x and y denote the position, a is the

random action taken (the direction of movement) and f shows the presence or absence of

food.

Figure 4.14 An example dependence diagram

a:

47%

f:

99%

x:

100%
y:

100%

80%
76%

40%

100%

0%

0%

100%
100%

0%

100%
0%

40% 60%

40%

64%

0%

93

4.2.1 Definitions

Definition 4.1: Static Dependence

For any set of rules R that predict the value of attribute d,

If condition attribute a appears in at least one rule, then d depends on a.

• If r ∈ R, and a ∈ CONDITIONS(r), then d = DECISION(r) depends on a.

Regardless of specific time steps, the more rules in which attribute a appears, the

more the dependence of d on a.

• d depends on a with strength s% if a appears in s% of the rules, written as Dd(a)

In a temporal rule, a may appear at different time steps. The frequency of its

appearance in the rules determines the strengths of the dependence.

• In rule r, d depends on a with strength s% at time step t if a appears in s% of the

rules at time step t, written as Dd,t(a)

To compute Dd(a) in a temporal rule, we use the following method:

With a window size w = 1 and 2: Dd(a) = Dd1(a)

With a window size w > 2: Dd(a) = max(Dd,1(a), … Dd,w-1(a))

Example: Suppose the ruleset R contains 2 rules: {[if at Time 1: <a = 1> and at Time

2:<a = 1> and <b = 2>, then at Time 3: <d = true>], [if at Time1: <a = 3> then at Time 3:

<d = false>]}.

Here we have the following: Dd(a) = 100% (a appears in all rules), Dd(b) = 50% (b

appears in half of the rules).

From the previous example we have Dd1(a) = 100%, Dd2(a) = 50%, Dd1(b) = 0%,

Dd2(b) = 50%.

Definiton 4.2: Dynamic Dependence

94

Dynamic dependence is similar to static dependence, except the strength of the

dependence is determined by the rules that actually get used for determining the value of

the decision attribute. In other words, only the rules that get fired by the test dataset are

considered for determining the strength of the edges.

In the previous example, suppose only the first rule was fired. In this case we have:

Dd(a) = 100%, Dd(b) = 100%. Dd1(a) = 100%, Dd2(a) = 0%, Dd1(b) = 0%, Dd2(b) = 100%.

In what follows, the phrase "appears in a rule" designates static dependence, while

"used for prediction" characterises dynamic dependence.

We use a threshold to prune weak and accidental dependencies.

Definition 4.3: Threshold Dependence and Independence

d is dependent on a if Dd(a) > ε, where ε is a user-specified threshold.

Otherwise, d is independent of a.

Definition 4.4: Dependence Diagram

A dependence diagram is a possibly cyclic, directed, weighted graph <N, L>, where

N is a set of nodes, each representing an attribute, and L is a set of links, each

representing the dependence of a decision attribute on a condition attribute. The direction

of the link is from the condition attribute to the decision attribute. Hence a node

represents a decision attribute when links are pointing to it, and a condition attribute

when links are pointing away from it. There are values (weights) assigned to both the

nodes and the links.

To create a dependence diagram, first the rulesets for predicting the values of one or

more decision attributes should be generated. The diagram then follows from the rulesets.

In both static and dynamic dependencies, the weight of a link is the same as the strength

95

of the condition attribute. For nodes, in a dynamic dependency, the weight of a node is

the training or testing accuracy of the rules created for predicting the decision attribute

that corresponds to the node. Nodes have no weight in static dependency because rules

are not run, hence no accuracy values are available. Traversing a dependence diagram

beyond one link is not possible, as by definition only the immediate links to and from a

node are meaningful. This characteristic sets the dependence diagram apart from a

standard graph.

4.2.2 Pruning a Dependence Diagram

Pruning a dependence diagram is performed at two levels. At the link level, we prune

links that do not have enough strength, or in other words, enough importance, in

determining the value of a decision attribute. At the node level, we remove whole

relationships, where the evidence for the relationship is not good enough. Node level

pruning is only possible with dynamic dependence diagrams.

Link oriented pruning: Each link in the diagram represents the strength of a decision

attribute's dependence on a condition attribute, as determined by the number of times the

attribute has appeared in the rules predicting the decision attribute. Links that have a

strength value below a certain level can be pruned.

Node oriented pruning: Each node in a dependence diagram represents an attribute.

Associated with each node is the training or testing accuracy for that attribute when it is

set as a decision attribute. This accuracy value is called the node’s strength. All the links

96

that point to nodes with a strength value below a certain level are pruned, regardless of

their strength. The node itself is removed if all the links to and from it are pruned, and its

strength is below the threshold.

Examples of pruning dependence diagrams are presented in the chapter on

experimental results.

4.3 Temporal Rules as Prolog Statements

In this section we describe how TimeSleuth generates Prolog Statements, to be used

in any situation where rule execution is needed. Specifically, we show how these

statements can be turned into a plan of action for programming a simple creature’s

movements in an artificial life [48] environment called URAL (University of Regina

Artificial Life) [87]. This representation is especially appropriate when the rules have

been derived with a window size of two, implying a “before” (the antecedent of the

Prolog statement) and an “after” (the consequence of the statement).

4.3.1 Rules Governing an Artificial Robot

Programming robots usually involves writing special programme that determine the

robot’s behaviour given the sensor values. There have been attempts at automatic

programming of robots. Such as Reinforcement Learning or Genetic Programming. But

here too a domain expert must explicitly provide the system with high-level information.

 For Reinforcement Learning the work includes deciding on the behaviour that should

be reinforced, and a payoff function, among others. For Genetic Programming one should

determine sets of terminals and primitive functions and come up with a suitable fitness

97

function. A discussion of this aspect of Genetic Programming and Reinforcement

Learning appears in [45]. Implementing a system to actually produce the results should

come next. There is no guarantee that performing these pre-processing steps will be

easier than writing a program manually. In the rest of the section we show how Prolog

rules are created, and investigate automatically generating Prolog programmes in the

simple environment of URAL.

URAL is a discrete event simulator where known atemporal and temporal rules

govern an artificial environment. Having complete knowledge about the URAL domain

allows us to judge the quality of the discovered rules, and this property will be explored

in the chapter on experimental results. Other kinds of data would have required

interpretations as to the true nature of relations among the attributes, making the process

of judging the output more complex and open to debate.

The world in URAL is a rectangular, two-dimensional board with a robot living in it.

Food exists at specific locations on the board. The robot can sense its position and also

the presence of food at the current position. The food (source of energy) can be used to

increase the energy level of the robot. The robot performs a random walk in the domain:

at each time-step, it randomly chooses one of the following actions: left (L), right (R), up

(U), or down (D). Left and right correspond to moving along the x-axis and up and down

to moving along the y-axis. The robot can sense which action it takes in each situation. If

it attempts to move beyond the boundaries of the board, the move is ignored and the

location of the robot is left unchanged.

In URAL, we can see the contents of the robot's “brain” in a window as shown in

Figure 4.15. Each circle in this figure denotes a (x, y) position in the world. The empty

98

locations have not been explored, or they may denote obstacles. The lines show the paths

taken by the robot as it has moved from one location to the next (the lines start at the

center of the starting location). An obstacle can be recognised if there is a line from the

center of a location to itself, which means that a move from that location towards the

obstacle resulted in the robot remaining in the same position.

Figure 4.15 A visual representation of the robot’s brain

The brain is the learning mechanism of the robot and follows conventional Situation

Calculus [54] concepts, where different situation are linked together via movement

actions. As time passes, more and more of the board are explored unsupervised, and the

brain will register the locations and the appropriate movement to go from one location to

the next. There is a one-to-one correspondence between the locations in the brain and the

world. This brute-force memorisation of the explored locations allows a planner to find a

way from the robot's current position to a location that contained food the last time it was

visited. The planner simply finds a route from the current location to the location of the

food. The user can activate the planner, or it can be activated automatically whenever the

robot's energy reaches a certain threshold. The success of the plan depends on whether

the world is dependable, i.e., if what we observed in the past is valid now.

99

The intuition behind this learning approach is to automate the task of teaching a robot

to behave properly in an unknown environment. The robot explores the environment by

itself during a learning phase, and makes a map in its brain. The user can then ask the

robot to go to a desired position. If the robot has already explored that position, then it

can plot a series of actions to get to the requested position. For this scenario to work, the

environment should be simple enough for the robot to be able to memorise the interesting

positions and the sequence of actions that should be performed to get there. Surprises

(ending up in a position that is not on the original path to the desired position) can be

handled by re-planning to find a new path from the current, unexpected, position to the

desired one.

The main problem with this approach is that it cannot perform any generalisation. The

brute-force approach is exponential in nature and thus inefficient in the amount of space

it needs. The bigger the map of the environment, the harder it would be for it to be

searched for a path.

One way of manually programming a robot is by using Situation calculus, which is a

method of describing the effects of actions. Each situation can be considered a snapshot

of the values of a set of attributes. One can move from a situation to another by

performing actions. This movement can result in a possibly cyclic graph with situations

as nodes and actions as links between the nodes. One can interpret the transitions

between the situations as the execution of rules. The starting situation forms the left hand

side of the rule, and the resulting situation forms the right hand side. Planning is easy

here: To go from the current situation to a desired situation, first make sure that they are

both in the graph, and then find a path connecting them. Following this path can be

100

regarded as executing the plan [65]. The familiar problem with this brute-force approach

to representing the effects of actions is that the number of possible situations grows

exponentially as the number of attributes increases or their domains become larger. This

problem can make representing a graph very expensive or even impossible.

At the other end of the spectrum one can represent the situations and the transitions

among them using first order logic formulas. [57] suggests that logic is a an appropriate

way of representing knowledge. Suppose do(A, S) means performing action A in situation

S, with the result being another situation. As an example, a statement like has(O,

do(pick(O), S) would then mean that if in any situation the agent picks up an object O,

then it has the object O in the next situation.

This method of representation allows us to generalise across attribute values because

the statement is true for many values of O and S. It also generalises across attributes

themselves, because the statement holds irrespective of what other attributes (other than

O and S) hold at the time. This form of representation has been used for programming

purposes. For example, in [49] rules extracted in a situation calculus domain are

considered as logic programmes. In GOLOG [47] which is a programming language

based on Situation Calculus, the programmer writes code to specify the initial state of the

environment, the preconditions and the effects of actions. This approach results in

efficient representations of the domain.

Our aim is to simplify the process of writing plans. We attempt to do this by deriving

the rules of the environment automatically and then using them as parts of a plan

generator [40].

101

4.3.2 Generating Prolog Statements

Each individual rule is concerned with learning the immediate effects of individual

actions. After knowing these effects, we can combine the actions in the form of a plan

and come up with more complex behaviours. Most other work on planning starts at this

point, because they consider the problem of knowing the effects of actions as already

solved.

The rules created by TimeSleuth can easily be represented as Prolog statements. The

c4.5rules programme in the C4.5 package generates rules from a decision tree. With

TimeSleuth this program is modified [34] to optionally generate its rules in Prolog. When

the user gives the command line option of '-p 0', or an option in TimeSleuth’s user

interface is selected, a <file stem>.pl Prolog file will be created in addition to the normal

output. The generated Prolog statements are in the Edinburgh dialect and can be fed to

most Prolog interpreters without change.

There is a problem in using Prolog to represent temporal rules: there is no concept of

time in standard Prolog. But as explained later, using Prolog to represent the rules is

especially appropriate in temporal domains, where the decision attribute is actually one of

the condition attributes, seen at a later time. A temporal order is implicitly present in

Prolog because it follows a rule's conditions from left to right.

So the problem disappears when we set the window size to 2 and perform

temporalisation in the forward direction, as the condition attributes will all be coming

from the previous time step relative to the decision attribute. The following discussion

will concern data generated from the artificial creature in URAl, where X referes to the

robot's position along the x axis, and A refers to the action (direction of movement). Table

102

4.1 shows parts of an example set of statements generated by TimeSleuth when the

decision attribute is x2 (The position of the robot at time step 2).

Table 4.1 Three sample Prolog statements generated by TimeSleuth

class(A1, X1, 0) :- A1 = 2, X1 = 1.

class(A1, X1, 2) :- A1 = 3, X1 = 1.

class(A1, X1, 3) :- A1 = 2, X1 = 4.

In Table 4.1 a value of 2 and 3 for action A1 could mean going to the left and right,

respectively. Following a classification terminology, the results are designated by a

predicate called "class." The condition attributes (action A1 and position X1 in this case)

come first, and the value of the decision attribute (the next value of x) comes last. In the

head of the rules, the condition attributes are used for the decision making process. In our

example temporal data, A1 and X1 belong to the current time step, while the classification

is done for the value of x in the next time step.

To use such rules the user can issue queries like class(2, 4, X2) (where does the

creature go from x = 4 if it moves Left?). If we are dealing with more than one sensor

attribute (x and y for example) we could rename "class" to something like "classx" to

avoid name clashes.

Notice that the automatically generated Prolog statements use the unification operator

(=) instead of the comparison operator (=:=). This allows the user to traverse the rules

backward and go from the decision attribute to the condition attributes, or from a set of

decision and condition attributes, to the remaining condition attributes. Some example

queries are class(A1, 1, 2) (which actions take the creature from x = 1 to x = 2?) or class

(A1, X1, 3) (which action/location pairs lead to x = 3?). This makes C4.5’s discovered

rules generally more useful.

103

TimeSleuth can generate rules that rely on threshold testing and set membership

testing. If we use the standard Prolog operators of =< and > for threshold testing, and

implement a simple member() function for testing set membership, then we would not be

able to traverse the rules backward, as they lack the ability to unify attributes. So if we

had a clause like: class(A, B, C) :- A =< B, member(A, C), then we would be unable to

use a query like class(A, 3, [1, 2, 3]), because Prolog can not perform the test =< on

attributes that are not unified.

Adding the unification ability to =<, > and member() will remove this limitation. For

example, X > 10 would choose a value above 10 for X if it is not already unified, and

member(X, [1, 2, 3]) would unify X with one of 1, 2, or 3 if it is not already unified. Both

cases would always succeed if X is not unified, but could fail if it is. We have written

some simple code to do just this and the results are shown in Table 4.2. We employed a

deterministic method to choose the value of the attribute that is going to be unified, but

one could use a random method too. ule (unify less-equal), ug (unify greater) and

umember() (unify member) are the unifying counter parts of =<, > and member(),

respectively.

Table 4.2 Prolog operators and functions for planning

Name Unifies? Implementation

=< No Standard

> No Standard

member() No member(A, [A|_]).

member(A, [_|B]) :- member(A, B).

ule Yes :- op(800, xfx, ule).

A ule B :- var(A), A = B.

A ule B :- A =< B.

ug

Yes :- op(800, xfx, ug).

A ug B :- var(A), A is B + 1.

A ug B :- A > B.

umember()

Yes umember(A, B) :- var(A), [X|_] = B, A = X.

umember(A, B) :- member(A, B).

104

If the argument to the left of ule is not unified, ule sets its value to be the same as its

argument to the right, and returns with success. If the left hand side argument is already

unified, then it does a =< test. The ug operator does the same with regard to >. If

unification is needed, it sets the left hand side argument to the value of the right hand side

argument plus 1. In both cases the right hand side argument should already have been

unified. The function umember() unifies the first argument with the first member of the

list if unification is needed. The second argument to this function should have already

been unified. These conditions seem to hold for rules generated by TimeSleuth, so it can

generate rules of the form class(A, B, C, 0) :- A = 1 , B ug 10, umember(C, [1, 2, 3]). As

explained below, this unification ability has another advantage: it allows us to generate

plans by backward chaining in the rules.

To create a Prolog plan generator, we have to make manual modifications in the

Prolog statements generated by TimeSleuth. The results will be a set of rules that search

backward from a desired situation to the current situation, and if such a path is found, we

prints the actions that have to be performed to get to the desired situation. The

modifications should be done manually because we have made the changes to c4.5rules

in a general manner and compatible with the normal output of C4.5. The Prolog clauses

that are generated simply do a normal classification without caring about any "bigger

picture" that may exist in a particular application such as planning. We now go over the

modifications needed for planning. Suppose we start with the rule: class(A1, X1, 0) :- A1

= 2, X1 = 1.

105

We have to make sure that Prolog does not get stuck in plans with cycles, where the

robot visits the same position unendingly. To prevent this problem we keep track of the

classes we have already visited. This is done by adding a list attribute to the class()

clause, and adding code for cycle-prevention. So now we have this rule: class(A1, X1, 0,

P1) :- A1 = 2, X1 = 1, not(umember(X1, P1)), P2 = [X1|P1].

X1 is used to distinguish among the steps in the plan. If we do not find the value of X1

in our list, then we know we are not in a cycle. If this holds we add it to the list P1 to get a

new list P2, and continue from there.

In a temporal domain one of the condition attributes may actually be the previous

value of our decision attribute. In this example x has this property. We now have to make

this fact explicit, because we want Prolog to make sure that we are actually in the

previous position before advancing to the next one. To do this we introduce the class()

clause in the condition part of the Prolog statements, which will allow Prolog to use

recursion and try all the paths that lead from one class to the next. So we now have:

class(A1, X1, 0, P1) :- A1 = 2, X1 = 1, not(umember(X1, P1)), P2 = [X1|P1], class(_, _, 1,

P2).

Notice that the value 1 in class(_, _, 1, P2) comes from X1 = 1, as in this example

class() is C4.5's name for the x position. Now Prolog can search for a way to get the robot

from the starting state to a desired state.

We can add a statement to print the plan after it is generated. This is simple to do:

class(A1, X1, 0, P1) :- A1= 2, X1 = 1, not(umember(X1, P1)), P2 = [X1|P1], class(_, _, 1,

P2), printOut(A1, X1).

106

Finally, we introduce the current position as a class statement. For example, if we are

currently at X1 = 0, we add the clause class(_,_,0,_) to the set of rules. Intuitively this

means we are currently at position 0, and we do not care how we got here.

Automating the above steps requires c4.5rules to know the previous value of the

decision attribute. Conveying this information to c4.5rules is not very easy, so the

transformation is done manually.

Performing the above steps on the rules in Table 4.1 gives us the rules in Table 4.3.

The helper functions not() and printOut() are also provided. The function umember() has

already appeared in Table 4.2.

Table 4.3 Prolog rules modified for planning

class(_, _, 0, _).

class(A1, X1, 0, P1) :- A1 = 2, X1 = 1, not(umember(X1, P1)), P2 =

[X1|P1], class(_, _, 1, P2), printOut(A1, X1).

class(A1, X1, 2, P1) :- A1 = 3, X1 = 1, not(umember(X1, P1)), P2 =

[X1|P1], class(_, _, 1, P2), printOut(A1, X1).

class(A1, X1, 3, P1) :- A1 = 2, X1 = 4, not(umember(X1, P1)), P2 =

[X1|P1], class(_, _, 4, P2), printOut(A1, X1).

not(G) :- G, !, fail.

not(G).

printOut(A, X) :- write('Robot is at: '), write(X), write(', it does

action: '), write(A), nl.

Using the above statements, the user can perform Prolog queries of the form class(_,

_, 7, []) to find a plan for going to position x = 7. He can include a position in the last

argument of his query to prevent that position from showing up in the plan, as anything in

that list will be avoided. Prolog will then print out the actions that should be performed to

get from the current position to the desired position.

C4.5 assigns a certainty value to each rule it generates, which shows how reliable that

rule is. TimeSleuth can optionally include certainty information in the generated Prolog

rules. Standard Prolog does not support the notion of reliability of a statement. To add

107

this information to the Prolog statements in a way that would be understandable to most

Prolog systems, we use a pseudo random number generator to cause a rule to fail in

proportion to its certainty value. A random integer is generated and tested against the

certainty value. A statement can fail if this test fails, no matter what the value of the

condition attributes. C4.5 computes the certainty values as a number less than 1 and

outputs them with a precision of 0.001. TimeSleuth multiplies this number by 1000 to

convert it to an integer. It outputs the necessary code to handle the certainty value if the

user invokes it with a '-p 1' command line argument, or the appropriate option from

TimeSleuth’s user interface.

We used example Prolog statements generated from the Letter Recognition Database

from University of California at Irvine's Machine Learning Repository [8] to illustrate the

certainty values (URAL data would result in very high certainty values). This database

consists of 20,000 records that use 16 condition attributes to classify the 26 letters of the

English alphabet. The 16 attributes are named A1 to A16. The decision attribute encodes

the index of the letters. The results, showing some statements for the letter "I," are shown

in Table 4.4.

Table 4.4 Prolog statements with certainty values

class(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, 8)

:- random(1000, N__), N__ < 793, A10 = 8, A12 = 5, A13 = 3, A14 = 8,

class(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, 8)

:- random(1000, N__), N__ < 793, A7 = 9, A13 = 0, A14 = 9, A16 = 7.

class(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, 8)

:- random(1000, N__), N__ < 707, A6 = 9, A10 = 7, A11 = 6, A13 = 0.

All condition attributes are represented in the left-hand side of the Prolog statements,

which allows Prolog to distinguish among the condition attributes by using their position,

so the user can specify the attributes unambiguously. In Table 4.4, the first rule has a

108

certainty value of 79.3%. The random(1000, N__) function assigns a number between 0

and 999 to N__. This value is then compared to the certainty value of the rule, which is

793. The statement could fail based on the results of the comparison. The random number

is named N__ to lessen the chances of an accidental clash with the name of a condition

attribute. One could implement the random number generator as follows [15]:

seed(13).

random(R, N) :- seed(S), N is (S mod R), retract(seed(S)),

 NewSeed is (125 * S + 1) mod 4096, asserta(seed(NewSeed)), !.

We have taken an active approach to representing the certainty values, because they

can actually cause the statements to fail if the random number is bigger than the certainty

value. In an alternate implementation, we could choose to simply output these values as

part of the statements and leave any specific usage to the user. An example, taken from

the last statement in Table 4.4, would be class(A1, A2, A3, A4, A5, A6, A7, A8, A9,

A10, A11, A12, A13, A14, A15, A16, N__, 8) :- A6 = 9, A10 = 7, A11 = 6, A13 = 0,

N__ = 707.

109

Chapter 5

 Experimental Results

In this chapter, we present the results of comparisons and experiments done with

TIMERS. First we will perform a comparison of TIMERS with other causality

discoverers and see that they yield some incorrect results. Next we perform a series of

experiments on TIMERS to show its behaviour on synthetic and real data.

 In Section 5.1 we compare TIMERS to CaMML and TETRAD. Causality has often

been applied to complex domain such as sociology, where the subject of what are the

causes and what are the effects is open to debate, so claims of discovering causality are

hard to verify. In this section we use the well-defined domain of the artificial robot as a

sanity check for these methods, because we know all the rules governing it, and as a

consequence we can analyse the results will little ambiguously.

In Section 5.2 we provide the results of further experiments with TIMERS on the

robot data, as well as a real world database containing weather observations and a

moving robot database. We also provide the results of experiments on a spatial database

that contains samples taken every half a metre from an oil well.

110

5.1 Comparison with Other Approaches to Causal Discovery

The purpose of the experiments in this section is to measure the effectiveness of

TimeSleuth, TETRAD, and CaMML in discovering rules when provided with sequential

data. First we apply the methods to non-temporalised data, which has information for

discovering atemporal rules. Then we apply the methods to data that is temporalised with

various window sizes, which should allow them to discover temporal rules. The results

show how temporalisation affects the output of the methods.

5.1.1 The Problem and the Desired Output

We apply the three methods to example dataset from the URAL programme. This

dataset is created by a robot that is performing a random walk in a two-dimensional

space. Each record in this dataset contains x and y position values at any given time, the

direction of movement at that time, and also a binary attribute indicating the presence or

absence of food. TETRAD restricts attributes to at most 8 values, so the size of the world

was set to be 8×8, with x and y values ranging from 0 to 7. To ensure fairness to all

methods, all results presented in this section are derived from a single run of 10,000 time

steps in URAL where food existed at locations (0,6), (1,2), (3,5), (5,5), and (6,3). The

location of food would not change during the run. These results are representative of

many experiments we have performed with varying number of time steps and a variety of

locations for food.

To be able to better pass judgment on the results, Table 5.1 shows the desired output

of TimeSleuth, TETRAD, and CaMML in each tool's notation. Given our knowledge of

111

the domain, our expected result is provided under the column Domain Expert and the

following columns give the desired output in the notation of the tools used. TimeSleuth’s

output is represented by rules because rules are C4.5’s output. FoodXY() is an atemporal

relation saying whether or not food is present at a given (x,y) location, while MoveX() and

MoveY() are temporal relations describing the effects of moving along the x-axis and y-

axis, respectively.

Table 5.1 The desired output for TimeSleuth, TETRAD, and CaMML
Window

Size

Domain Expert TimeSleuth TETRAD CaMML

f = FoodXY(x, y) if {(x= α) & (y = β)} then
(f =δ)

x → f,

 y → f

(x, y → f)

1 No relation for a, x, y No rules (low accuracy) a, x, y (→ a), (→ x),

 (→ y)

fw = FoodXY(xw, yw) if {(xw = α) and (yw = β)} then
(ft = δ)

x → fw,,

y → fw

(xw, yw → fw)

xw = MoveX(xw-1, atw1) if {(xw-1 = α) and (aw-1 = γ)}
then (xw = δ)

xt-1 → xw,

 at-1→ xw

(xw-1, aw-1 →

 xw)

yw = MoveY(yw-1, aw-1) if {(yw-1 = α) and (aw-1 = γ)}
then (yw = δ)

yt-1 → yw,

at-1→ yw

(yw-1, aw-1 →

 yw)

w ≥ 2

No cause for at No rules (low accuracy) at (→ aw)

For any window size w ≥ 2, the result of a move depends only on the position and the

move direction in the w-1 time step (time starts at 1 and ends at w in each record that is

temporalised in the forward direction). We expect the atemporal relations that hold for w

= 1 to also hold for w > 1 because atemporal relations do not depend on time.

In Table 5.1, TETRAD's and CaMML's desired output are represented directly in

their respective notations. TimeSleuth's desired output is given in template form, as

generalised rules. The actual output has multiple rules, with one rule for each

combination of the values for the attributes representing conditional attributes. Also, the

actual output does not contain keywords such as if, then, or and, and has specific values

instead of the α, β, and δ parameters.

112

5.1.2 Results with a Window Size of 1

 To test their ability to find atemporal relations, we ran TETRAD 4.3.3 [93], CaMML

and TimeSleuth on non-temporalised data. We consider the rules x o→ f, y o→ f to be

incorrect because they imply the wrong direction. We note that by design TETRAD

cannot find rules of the form (x, y → f), because it only searches for relationships between

two attributes at a time.

TETRAD can be run with several options. If the existence of latent common causes is

assumed, TETRAD uses the FCI algorithm, and otherwise if causal sufficiency is

assumed, TETRAD uses the PC algorithm [71]. The PC algorithm has been proved to be

correct if the Markov and Faithfulness assumptions hold in the data [71]. The results for

TETRAD with the FCI algorithm are shown in Table 5.2.

Table 5.2 Rules discovered by TETRAD’s FCI algorithm (w = 1)

Significance Levels Correct Rules Incorrect Rules

0.0 a x o→ f, y o→ f

0.001, 0.01, 0.05, 0.1, 0.2 a y o−o f, y o−o x, a o−o x

 In Table 5.3 we provide TETRAD’s results with the PC algorithm. In a some cases

PC’s results are less conclusive than FCI’s results. For example, y − f is undirected and

could mean any of y → f, y o−o f, y o→ f, f → y, etc. TETRAD’s best results are obtained

with the PC algorithm and a significance level of 0.0.

Table 5.3 TETRAD’s rules with the PC algorithm (w =1)

Significance Levels Correct Rules Incorrect Rules

0.0 a, y → f, x → f

0.001, 0.01, 0.05, 0.1, 0.2 a x − f , y − f, x − y

113

For the same data, CaMML gave the results shown in Table 5.4. CaMML found all

the correct atemporal rules. In reality, x and y do not cause f in URAL, but without any

domain knowledge, it is reasonable to interpret this relationship as a causal one, so we

accept the rule (x, y → f) as correct.

Table 5.4 CaMML's results with non-temporalised records (w = 1)

Correct Rules Incorrect Rules

(→ a), (→ x) , (→ y), (x, y → f)

We ran TimeSleuth with the same data, with options set to try all attributes as the

decision attribute. The results are shown in Table 5.5. The first two entries for predicting

the value of f show that c4.5rules eliminated unneeded condition attributes when creating

rules. In general, if the value of x is sufficient to predict the outcome regardless of the

value y, the generated rule will not include y and vice versa. We accept all the rules

generated for predicting f as correct, because together they correctly predict the presence

or absence of food.

As a classifier, C4.5 creates rules regardless of whether or not they make semantic

sense, but none the less the results were interesting. There is a strong association between

f, x, and y, and this is exploited by TimeSleuth for predicting the value of these attributes.

The value of a, however, is unrelated to any other observable attribute, and this is

reflected in low accuracy value for the rules. The low accuracy rules are discarded

because they fall below any threshold value of 35% or more, including 80%, 90%, 95%,

99.5%, and 99.99% that correspond to TETRAD’s significance levels.

114

Table 5.5 TimeSleuth's results with non-temporalised records (w = 1)

Decision

Attribute

Condition

Attribute(s)

Number

of Rules

Correctness Training

Accuracy

x 3

y 4

f

x, y 20

Correct

100%

x y, f 4 Incorrect 19.9%

y x, f 5 Incorrect 21.2%

a x, y 7 Incorrect 26.4%

In TIMERS, rulesets with low accuracy values are considered to imply the absence of

a reliable relationship between the involved attributes.

5.1.3 Results with Larger Window Sizes

Window size 2: Temporalising using a window size of w = 2, produced records with

8 attributes {x1, y1, f1, a1, x2, y2, f2, a2}. To test the discriminating powers of these

methods, we included all eight attributes in the tests, including the ones that appear at the

same time as the decision attribute. In the experiments reported in Section 5.2, we will

only use the decision attribute at the current time.

TETRAD, CaMML, and TimeSleuth were applied to determine whether they could

discover the FoodXY() atemporal function and the MoveX() and MoveY() temporal

functions.

TETRAD's output with the FCI algorithm (assuming the existence of latent causes) is

summarised in Table 5.6. TETRAD allows the user to specify any temporal order among

the input attributes, and we provided the information that attributes from one time step

have a temporal precedence from the attributes of the following time step. With FCI,

temporalising the records resulted in many more rules being discovered than with

window size 1. Most of these rules are incorrect.

115

Table 5.6 TETRAD’s FCI algorithm with temporalised records (w = 2)

Significance Levels Correct Rules Incorrect Rules

0.0 a2 y1 o→ y2, f1, a1 → y2, a1 o→ x2, x1 o→ x2, f2

0.001, 0.01, 0.05, 0.1, 0.2 a2 y1 o→ f1, y1 o→ y2, a1 o→ x2, a1 o→ y2, x1 o→

f1, x1 o→ x2, f2

TETRAD’s output assuming no latent common causes (the PC algorithm) appears in

Table 5.7. As can be seen, PC also discovered more incorrect rules after temporalisation.

Table 5.7 TETRAD’s PC algorithm with temporalised records (w = 2)

Significance Levels Correct Rules Incorrect Rules

0.0 y1 → f1, y1 → y2, a1 → x2,

a1 → y2, a2, x2 → f2

 f1→ x2, f1 ↔ x2,

x2 → x1

0.001, 0.01, 0.05, 0.1 y1 → y2, a1 → x2, a1 → y2 ,

a2, x2 → f2

y1 − f1, y1 → x2, f1 → x2,

f1 → x2, x2 → x1

0.2
y1 → y2, a1 → x2, a1 → y2,

 x2 → f2, a2

f1 → y1, f1 → x2, f1 → x1,

x2 → x1

The results of applying CaMML with a window size of 2 appear in Table 5.8. For

CaMML, we were unable to discover any means of specifying a temporal order among

the input attributes. It continued to discover the same relations as it had found with non-

temporalised records. These relations are correct, because the relations that existed in the

previous case continue to exist in the temporalised data. However, CaMML failed to

discover the relationships between the previous location and action, and the current

location. The correct relationships might have been expressed as (x1, a1→ x2) and (y1,

a1→ y2), but they are absent in the output. CaMML discovered the single rule (x1, y1, x2,

y2 → a1), which represents the same information in an alternative format. However, this

might be considered to be temporally invalid, because it refers to the values of variables

in the future to predict the past. In fairness to CaMML, the temporal information was not

available to it.

116

Table 5.8 CaMML's rules with temporalised records (w = 2)

Correct Rules Incorrect rules

(→ x1), (→ y1) , (x1, y1 → f1),

(x2, y2 → f2) , (→ a2)

(x1, y1, x2, y2 → a1),

(→ x2), (→ y2)

The results of applying TimeSleuth to the same data are given in Table 5.9. In our

8×8 board, 4 possible actions and 8 distinct values exist for each of x1 and y1. In this

example, the agent has explored the entire world, and TimeSleuth created 32 (8×4) rules

for predicting the next value of each of x2 or y2. It correctly pruned y1 from the rules for

x2, because the rules for moving along the x-axis are independent of the value of y.

Similarly, it pruned x1 from the rules for y2.

The rules for predicting f2 are the same as the rules given in Table 5.1 for predicting f

in the atemporal case, which is correct, because the rules for food are not dependent on

time. TimeSleuth was also tried on the a2 attribute, which is not caused by any of the

observable attributes. We have not shown the results with x1, y1, f1, and a1 as decision

attributes. Consistent with the results with non-temporalised data, those rules have low

accuracy values.

117

Table 5.9 TimeSleuth's results with temporalised records (w = 2)

Decision

Attribute

Condition

Attribute(s)

Number

of Rules

Correctness Training

Accuracy

x2 3

y2 4

f2

x2, y2 20

Correct

100%

x2 x1, a1 32 Correct 100%

y2 y1, a1 32 Correct 100%

x1, a1, y2 16

x1, y1, a1, 18

x1, y1, y2 6

x1, x2, y2 7

x1, y1, x2 4

x1, y2 3

x1, y1 2

x1, a1 1

a2

a1, y2 1

Incorrect

29.8%

Window Sizes Larger Than 2: TETRAD’s FCI and PC algorithms were tried with w =

3. The results are shown in Table 5.10 for FCI and in Table 5.11 for PC.

Table 5.10 TETRAD’s FCI algorithm with temporalised records (w = 3)

Significance Levels Correct Rules Incorrect Rules

0.0 a3 y1 o→ y2, f1, a1 o→ y2, a1 o→ x2, x1 o→ x2, f2,

a2 o→ y3, a2 o→ x3, f3 o→ y3, x3 o→ a2

0.001, 0.01, 0.05,

0.1, 0.2

a3 y1 o→ f1, y1 o→ y2, a1 o→ y2, a1 o→ x2, x1 o→ f1,

x1 o→ x2, f2, a2 o−o x3, a2 o→ y3, f3 o→ y3

Table 5.11 TETRAD’s PC algorithm with temporalised records (w = 3)

Significance Levels Correct Rules Incorrect Rules

0.0 y1 → y2, x1 → x2, y1 → f1, a1 → y2,

a1 → x2, x1 → f1, a2 → x3, a2 → y3, a3

f2, y3 ↔ f3, f3 ↔ x3

0.001 y1 → y2, a1 → y2, a1 → x2,

x1 → x2, a2 → x3, a2 → y2, a3

y1 − f1, y1 − x1, f1 − x1, f2 ,

y3 ↔ f3, x3 ↔ f3

0.01, 0.5, 0.1, 0.2 y1 → y2, a1 → y2, a1 → x2,

x1 → x2, a2 → x3, a2 → y3, a3, x3 → f3

y1 − f1, y1 − x1, f1 − x1, f2 ,

y3 ↔ f3,

In all experiments performed with TETRAD, the PC algorithm clearly gave better

results than the FCI algorithm, implying that in the test data the assumption of causal

118

sufficiency holds. PC’s results were generally better when the significance level was set

to 0.0.

TimeSleuth obtained good results with larger window sizes. The causal rules

concerning xw and yw all have an accuracy value of 100%. As demonstrated in [33], C4.5

effectively handles the bigger input records that are created by larger window sizes by

pruning irrelevant attributes. More experiments with TimeSleuth on the robot database

are given in Section 5.2. Table 5.12 summarises the results obtained with window sizes

from 3 to 10.

Table 5.12 Test results for larger window sizes

Window Size Domain Expert TimeSleuth TETRAD CaMML

FoodXY(xw, yw) if {(xw = α) and (yw = β)}
then (fw = δ).

MoveX(xw-1, aw-1) if {(xw-1 = α) and (aw-1 = γ)}
then (xw = δ).

3 ≤ w ≤ 10

MoveY(yw-1, aw-1) if {(yw-1 = α) and (aw-1 = γ)}
then (yw = δ).

Better

results with

the PC

algorithm.

Not tested

because it

cannot

handle the

input size

5.1.4 Summary of Comparisons

The results of our experiments are summarised in Table 5.13, where the number of

correct and incorrect relations/rules discovered by each system, for a variety of window

sizes, is given. For TETRAD, we consider the PC results with a 0.0 significance level

and for TimeSleuth we assumed a confidence threshold of 95%.

Table 5.13 Summary of experimental results

TETRAD CaMML TimeSleuth Window

Size Correct Incorrect Correct Incorrect Correct Incorrect

w = 1 3 0 4 0 27 0

w = 2 6 3 5 3 91 0

w = 3 9 3 N/A 91 0

119

TIMERS performs well on this problem. CaMML was not able to use any temporal

information. Both TETRAD and CaMML found some wrong relations as the window

size was increased.

5.2. Evaluation of TIMERS on Synthetic and Real Data

In the previous section we used temporalisation strictly in a forward direction, so we

could perform comparisons with other software. In this section, we employ TIMERS’

more flexible treatment of time. We also assume that the domain expert can choose a

decision attribute, so we concentrate on specific attributes instead of trying all of them..

We first use two temporal datasets to test TIMERS’ ability in discovering casual and

acausal rules. The first dataset is from URAL and the second dataset is from a weather

station in Louisiana AgriClimatic Information System [88]. To show that TIMERS can

be employed independently of the underlying rule discovery method, we employ both

classification and regression to generate rules.

Later in this section we discover rules from another real-world temporal dataset that

contains observations regarding the detection of failure in a robot that grabs and moves

objects. In the last set of experiments we show how TIMERS can be applied to a spatial

dataset.

5.2.1 Using Classification to Generate Rules

The Artificial Robot

We used 2500 records for training, and 500 for testing the rules (predictive accuracy).

The decision attribute is set to be the current value of x, and the other three attributes (y, f,

120

and a) are set as the condition attributes. There is no relationship between the current

value of x on one hand, and the current values of y, direction of the movement, or the

presence of food on the other hand. So we predict that an instantaneous test (window size

of 1) will give poor results. From our understanding of the domain we know that the

current value of x depends on the previous value of x, and the previous direction of

movement (the same holds for y). We expect the method to classify the relationship as a

causal one. The acausal hypothesis says that you can tell where you were before if you

know where you are now. This hypothesis is clearly wrong, as we could have ended at

the current position from a different number of previous positions. Hence we do not

expect to get good results with our acausality test. The results are shown in Table 5.14,

where “T Accuracy” stands for training accuracy, and “P Accuracy” stands for predictive

accuracy. The “Position” column shows the index of the decision attribute within the

temporalised record.

Table 5.14 TIMERS' results with the robot data. Verdict is causal

Window Position T Accuracy P Accuracy Type of test Actual rules

1 1 19.7% 20.4% Instantaneous Instantaneous

2 1 56.2 55.7% Acausal Acausal

2 2 100% 100% Causal Causal

3 1 57.6% 55.6% Acausal Acausal

3 2 100% 100% Acausal Causal

3 3 100% 100% Causal Causal

4 1 58.4% 58.1% Acausal Acausal

4 2 100% 100% Acausal Causal

4 3 100% 100% Acausal Causal

4 4 100% 100% Causal Causal

5 1 58.4% 57.1% Acausal Acausal

5 2 100% 100% Acausal Causal

5 3 100% 100% Acausal Causal

5 4 100% 100% Acausal Causal

5 5 100% 100% Causal Causal

121

Considering the 100% accuracy values with a window size of 2 or bigger in the

causal tests, TIMERS declares the relation to be causal. With any position bigger than 1,

the previous record which contains the relevant information for an accurate prediction of

current x value, is included in the temporalised data, and TIMERS discovers the correct

temporal relation between the current value of x and the previous x and movement

direction. In other words, even with an acausality test, the rules are all causal because

they only contain attributes from the previous time step.

An example rule would be: if {(xt = 1) AND (at = Right)} then (xt+1 = 2). The

equivalent Prolog rule generated by TimeSleuth is: class(Y_t1, F_t1, originalDecision_t1,

X_t1, 2) :- OriginalDecision_t1 = 3, X_t1 = 1. originalDecision is the default name given

to the decision attribute in the input file (in this case it is the direction of movement) as

opposed to the decision attribute chosen by the user (in this case we had chosen x). 3 is

the code for moving to the Right. Y and F do not appear among the condition attributes,

which means that their values are not important in this rule. The last argument in the

prolog rule (2 in this case) is the decision attribute's next value. This rule indicates that no

matter what the previous y location and the presence or absence of food, to go to the x

location 2 in the next time step, you can be in x location 1 and move to the Right. As

explained in Chapter 4, a series of such rules can be combined to automatically come up

with a plan for moving from a starting location to a destination. The whole Prolog file is

presented in Appendix 1.

We now create a dependence diagram for the robot data.

Step 1: building the diagram. The diagram is as shown in Figure 4.14.

122

Step 2: Pruning. We remove all links with strength less than or equal to 80%, and

remove all nodes with strength less than 50%. As it turns out, no nodes are removed.

Results are shown in Figure 5.1 below.

Figure 5.1 The pruned dependence diagram for the robot data

We can observe the influence of the attributes on each other in this dependence

diagram, and thus have a pictorial summary of the rules. If there is a link from a node to

itself, then we know that the reference means that the value of the corresponding attribute

at a different time (past of future) is used for predicting the present value. This implies

that we see a node pointing to itself only when the window size is bigger than 1.

Compared to the experiments of the previous chapter, it seems that the rules for

predicting the value of f have changed (x and y are not pointing to f as one would expect

from the results of Section 5.1). The reason is that in the experiments of this section

TIMERS is not including the x and y values that are observed at the same time as f. To re-

create the atemporal rules for f in Section 5.1, one should perform the test with a widow

size of 1.

100%

100%
100%

100%

f:

99%

a:

47%

y:

100%
x:

100%

123

We do not claim that a dependence diagram necessarily implies the existence of

causality, because the rules that are used as the basis for the diagram may have come

from an instantaneous or acausal investigation. Any interpretation of causal relationships

derived from a dependence diagram is left to the domain expert.

The weather data

The subject of experiments in this subsection is a real-world dataset from weather

observations in Louisiana, and hence interpreting the dependencies and relationships is

harder than the robot dataset. It contains observations of 8 environmental attributes

gathered hourly from 22/7/2001 to 6/8/2001. There are 343 training records, each with

the air temperature, the soil temperature, humidity, wind speed and direction and solar

radiation, gathered hourly. 38 other records were used for testing the rules and generating

predictive accuracy values. We have set the soil temperature to be the decision attribute.

The results obtained are shown in Table 5.15.

Table 5.15 TIMERS’ results the weather data. Verdict is acausal

Window Position T Accuracy P Accuracy Type of test Actual rules

1 1 27.7% 23.7% Instantaneous Instantaneous

2 1 75.1% 59.5% Acausal Acausal

2 2 82.7% 67.6% Causal Causal

3 1 85.3% 75.0% Acausal Acausal

3 2 82.4% 72.7% Acausal Acausal

3 3 86.8% 77.8% Causal Causal

4 1 85.3% 74.3% Acausal Acausal

4 2 85.9% 74.3% Acausal Acausal

4 3 83.2% 74.3% Acausal Acausal

4 4 84.4% 71.4% Causal Causal

5 1 85.0% 73.5% Acausal Acausal

5 2 87.0% 76.5% Acausal Acausal

5 3 85.0% 76.5% Acausal Acausal

5 4 83.8% 76.5% Acausal Acausal

5 5 86.7% 73.5% Causal Causal

124

Because the accuracy values in the two directions of time are close, TIMERS declares

the relationship between the soil temperature and other attributes to be acausal. The

relationship is not instantaneous, as observed by relatively poor results with a window

size of 1 (instantaneous test). The accuracy goes up after temporalisation, implying that

there is a temporal relationship at work.

We now create a dependence diagram for the weather data created from a causal

investigation with window size 2. We use a minimum strength value of 40% for pruning

the edges, and a minimum strength value of 50% for pruning the nodes.

Step 1. Building the diagram. To save space and avoid displaying many links, we

show the diagram after pruning the links, so only links with strength values more than

40% are shown. Figure 5.2 shows the results.

Figure 5.2 Dependence diagram for the weather data

Air Temp:

87%

Avg Wind

Spd: 61% Wind

Dir: 45%

Humidity:

67.8%

Solar Rad:

76%

Rain:

100%

Max Wind

Spd: 39%

Soil Temp:

67%

52%

100%

100%

46%

100%

94%

59% 92%
42%

100%
88% 63%

44%

52%

125

Step 2. Remove nodes with strength values less than 50%. Results are in Figure 5.3.

Figure 5.3 The pruned dependence diagram for the weather data

In a dependence diagram, the influence of a node is limited to the nodes to which it is

pointing. Nodes that are connected together indirectly, such as Solar Radiation and Soil

Temperature in the path Solar-Radiation → Air-Temperature → Soil-Temperature, do not

necessary guaranty the presence of a direct link such as Solar-Radiation → Soil-

Temperature (no transitivity). In our tests, however, when we removed the intermediate

nodes, we would usually see the emergence of a link between the nodes, as illustrated in

Figure 5.4, where the node Air Temperature is removed from the input data. A new link

Solar-Radiation → Soil-Temperature emerges. However this result is not to be

generalised.

Air Temp:

87%

Avg Wind

Spd: 61%

Humidity:

67.8%

Solar Rad:

76%

Rain:

100%

Soil Temp:

67%

52%

100%

87%

46%

100%

92% 42%

88%

63%

44%

52%

126

Figure 5.4 Dependence diagram with Air Temperature removed from the data

5.2.2 Using Regression to Generate Rules

In this subsection we compare the effectiveness of our TIMERS algorithm when

using a regression programme called CART. When applicable, we have used both

CART's regression, as well as its classification abilities. We show that the results are

consistent with those obtained from classification with C4.5.

In the following tables, the values under "classification" represent the percentage of

correct classifications done on training data (Training accuracy) and testing data

(Predictive accuracy), while the values for "regression" represent the error values (mean

square error). So higher values for classification are better, while lower values for

regression are desired.

Unlike C4.5, CART has not been integrated into TimeSleuth, so to perform the

following tests we prepared CART’s input files manually by performing temporalisation

and then removing the current-time condition attributes. To use CART as the classifier

Humidity:

74%

Solar Rad:

76%

Rain:

100% Soil Temp:

78%

100%

94%

44%

92%

92% 42%

71%

44%

82%

Avg Wind

Spd: 61%

127

with TIMERS, a few points have to be addressed. For one, CART’s main output form is a

decision tree, which does not cause any problem when evaluating the output, because the

accuracy of the tree can be used instead of accuracy of rule sets. As to the complexity of

the output, one could use the number of nodes in the tree as the measure of complexity.

The other point to consider when using CART is how to measure the quality

intervals. As we have seen this was easy to do with accuracy values because they lie

between 0% and 100%, while when performing regression, CART’s error values start

from 0.0 and increase without bounds. Hence a notion of overlap is harder to define in

this case. For this reason we can refrain from constructing an interval, and simply

compare the error values with a tolerance value as determined by the domain expert.

The Artificial Robot

Results of running regression on the artificial robot dataset are shown in Table 5.16.

Table 5.16 TIMERS’ results with CART on the robot data. Verdict is Causal
Regression Classification Win Pos

T Error P Error T Accuracy P Accuracy

Type of test Actual rules

1 1 1.822 1.402 23.1% 26.5% Instantaneous Instantaneous

2 1 0.657 0.672 55.3% 53.3% Acausal Acausal

2 2 0.0 0.0 100% 100% Causal Causal

3 1 0.657 0.673 55.3% 53.2% Acausal Acausal

3 2 0.0 0.0 100% 100% Acausal Acausal

3 3 0.0 0.0 100% 100% Causal Causal

4 1 0.657 0.675 55.3% 52.9% Acausal Acausal

4 2 0.0 0.0 100% 100% Acausal Acausal

4 3 0.0 0.0 100% 100% Acausal Acausal

4 4 0.0 0.0 100% 100% Causal Causal

5 1 0.657 0.675 55.7% 52.7% Acausal Acausal

5 2 0.0 0.0 100% 100% Acausal Acausal

5 3 0.0 0.0 100% 100% Acausal Acausal

5 4 0.0 0.0 100% 100% Acausal Acausal

5 5 0.0 0.0 100% 100% Causal Causal

As shown in Table 5.16, CART and C4.5 behave similarly when provided with the

same data. The conclusion is the same in both cases: value of x is in a causal relation with

128

other attributes, because a causality test provides better results than either the

instantaneous or acausality tests. The trend of having 100% accuracy for the tests

continued with window sizes higher than 5. For the decision trees, the conclusion is that

the system is causal, because the causal trees were smaller than the acausal ones, hence

here the complexity measure works as a tie-breaker.

The weather data

As with the previous dataset the main aim is to compare CART’s and C4.5's results

so as to evaluate TIMERS' consistency in giving a verdict when using different rule/tree

discovering programmes. We have set the soil temperature to be the decision attribute.

The results are shown in Table 5.17.

Table 5.17 TIMERS’ results with CART on Louisiana weather data

Window Position T Error P Error

1 1 4.111 3.359

2 1 385.883 1173.173

2 2 0.562 0.716

3 1 2.055 2.193

3 2 0.463 0.648

3 3 0.653 0.669

4 1 4.127 5.104

4 2 0.456 0.656

4 3 0.463 0.615

4 4 0.472 0.484

5 1 2.051 2.226

5 2 0.463 0.680

5 3 0.487 0.654

5 4 0.454 0.675

5 5 0.626 1.442

Because Soil Temperature is a continuous attribute and CART does not have an

integrated mechanism for discretisation, we only performed regression. With different

window size values, CART displayed more variation than C4.5, but the user is still able

129

to make a decision as to the acausal nature of the relationship, because the results of the

causal and acausal tests are close.

5.2.3 Short-interval Temporal Data

Previous temporal data concerned observations that were made one after the other,

from the same system. It can happen that we deal with "bursts" of temporal data, where a

certain number of observations are made at each time, and there is no relationship

between the bursts.

In this section we attend to the problem of failure detection in a robot that grabs,

moves, and puts down objects. Upon encountering a failure, the force and torque values

along the x, y, and z axis (a total of 6 values) are recorded 15 times at regular intervals.

The whole process takes 315 ms. The results are then used to classify the type of error

that occurred. We are interested only in the type of failure, not in any given event or

value in the data. The event (failure) has happened before the 15 records are collected.

For this reason we should temporalise the data using a window size of 15 and a position

for the decision attribute that is either before, or after the observations. This

temporalisation is possible because we assume that at the time index of the decision

attribute, no other (condition) attribute is present. We add a dummy attribute to all time

steps to represent the decision attribute.

In [73], five strategies were used to create decision rules for solving the problem. The

first one uses the 6 sensor values as they are, while in others these values are pre-

processed, and then used in the decision making process. The 5
th
 strategy combines all

the data available to other strategies. The observations have been divided into 5 learning

130

problem datasets. LP1 (failure in approach to grasp), LP2 (failure in transfer), LP3

(failure in positioning a part after a transfer), LP4 (failures in approach to ungrasp), and

LP5 (failure in motion with part). This kind of data cannot be processed by the standard

sliding position TIMERS method, as it does not make sense to place the decision attribute

(occurrence of failure) within the observed records.

To obtain the results in Table 5.18, we used TIMERS to merge every 15 consecutive

records into a single one, and used C4.5 to create decision trees. C4.5 was invoked with

default parameters, with the exception of the values marked with a *, where the -g (use

gain) option was used to generate the decision tree. In these cases the values obtained by

default arguments appear in parenthesis. The five strategies covered in [73] are presented

as S1 to S5.

Table 5.18 Accuracy values for the robot learning problem

TIMERS Problem S1 S2 S3 S4 S5

Position = 15 Position = 1

LP1 78% 80% 96% 85% 89% 97.7% 97.7%

LP2 45% 57% 51% 68% 64% 95.7% 95.7%

LP3 49% 75% 87% 85% 83% 85.1%* (48.0) 97.9%

LP4 65% 60% 95% 77% 83% 100%* (94.9) 100%* (99.1)

LP5 69% 63% 72% 49% 77% 90.9%* (89.0) 90.9%* (82.3)

There is a very close correspondence between the values obtained using different

directions of time (positions of 1 or 15), which is to be expected, as the decision attribute

is not a an attribute observed at any other time. We see that TIMERS gives either better

or nearly the same accuracy values as the best of the 5 strategies in [73]. It is also more

consistent compared to the other 5 strategies in terms of the quality of results. While

TIMERS and S1 both use the original values of force and torque, TIMERS performs

considerably better without requiring the user to come up with ways to process data,

131

which is a desirable quality because it frees the user from having to guess which pre-

processing method should be used in any particular case.

5.2.4 Spatial Data

We have mentioned that there are similarities between sequential data that come from

temporal observations of a system, and sequential data from a spatial domain. For the

experiments described in this section, we used data generated while drilling an oil well

[86]. It includes observations about the characteristics of the soil being pierced, including

the porosity of the soil (the capacity to hold oil) and different resistance values. The

records were registered every 0.5 metre, between the depths of 7400 and 8907.5 metres.

The decision attribute was set to be the porosity.

The attributes are real-valued, so to produce results with a classifier such as C4.5, we

discretised porosity to 20 different values. Regression is a more natural approach to this

kind of data, and as we will see, regression works better than classification for this

problem. TIMERS' results with classification are given in Table 5.19.

132

Table 5.19 TIMERS' classification results with C4.5 on the drilling data

Window Position T Accuracy P Accuracy

1 1 43.2% 50.5%

2 1 42.6% 45.7%

2 2 43.1% 47.8%

3 1 38.1% 43.2%

3 2 45.4% 46.6%

3 3 40.7% 45.6%

4 1 39.9% 45.0%

4 2 45.7% 51.2%

4 3 43.6% 47.6%

4 4 40.5% 48.0%

5 1 38.4% 39.2%

5 2 42.6% 46.6%

5 3 44.5% 48.4%

5 4 45.6% 52.3%

5 5 38.4% 45.8%

We do not consider determining causality or acausality with this data. According to

the results in Table 5.19, to predict the porosity at a given depth, the neighbouring values

should be used. Throughout this Table the values are relatively close, and the results

obtained with a window size of 1 are fairly close to those obtained with bigger window

sizes, though over all the accuracy values are low because the attributes are numerical,

and not suitable for a classification approach. We consider these results inconclusive, and

suggest using regression instead.

On this data CART was much more effective with regression than classification.

Table 5.20 shows CART’s regression results.

133

Table 5.20 TIMERS’ results with CART’s regression on drilling-sample data

Window Position T Error P Error

1 1 0.017 0.030

2 1 0.017 0.015

2 2 0.024 0.017

3 1 0.020 0.016

3 2 0.012 0.010

3 3 0.018 0.014

4 1 0.018 0.015

4 2 0.011 0.009

4 3 0.012 0.010

4 4 0.020 0.015

5 1 0.021 0.016

5 2 0.013 0.010

5 3 0.012 0.009

5 4 0.013 0.010

5 5 0.019 0.014

The error values are low and close to each other. Here we get better results when the

decision attribute is in between some previous and next observations, implying that the

value of porosity changes gradually. At the extreme ends, where the position is either 1 or

equal to the window size, the error rate increase. The error rate is also higher for the case

where window size is 1. This confirms that at any point, the current value of porosity is

best predicted by observations made at both sides of that point.

134

Chapter 6

Concluding Remarks

In this thesis, we have presented the main characteristics and abilities of TIMERS and

its implementation, TimeSleuth. In this chapter we discuss and summarise the main

points of the approach. Section 6.1 discusses when this method can be applied for

problem solving. Section 6.2 mentions the advantages and the disadvantages of this

method, as they usually come together. A summary of the thesis is presented in Section

6.3.

6.1 Applicability of the Approach

For the examples of this section we assume that A and B denote the events of two

attributes taking on certain values. The test for judging the causality of a set of rules

depends on the quality of the rules in two temporal directions. For causality to manifest

itself, the source of the observations should represent an irreversible relationship that

exists in only the forward temporal direction. For example, B should often follow A, but

A should only sometimes follow B. In such a case A would be considered a cause of B

135

because it can be reliably used to predict B using forward temporalisation, while B cannot

be used to predict the presence of A with the same accuracy. The implication of this

condition is that B should have more than one cause, so B would follow A more often

than A following B.

This restriction on the temporal direction of a relationship matches the common sense

notion of causality. If A and B always follow each other, then one may tend to conclude

that they are causing each other. Many researchers are not interested in circular causality,

and assume that a hidden common cause is making both A and B happen. TIMERS also

considers such a relationship to be acausal.

TIMERS may make mistakes when A is the only cause of B, and A reliably causes B.

In such a case we always observe A and then B in the normal direction of time (because A

always causes B), and we always observe B and then A in the reverse direction of time

(because B is only caused by A). In this case, TIMERS will declare the relationship as

acausal. In the absence of any other knowledge, TIMERS’ verdict in this case is intuitive,

because one can argue that it is possible to have a hidden common cause that is at work

and is causing both A and B to appear, but at different times.

From a more practical point of view, TIMERS works reliably when the effect always

follows the cause within a specific amount of time (a time window), but the causes are

more widely separated. In short, TIMERS declares a relationship between the decision

attribute and the condition attributes to be causal when the relationship is not temporally

circular and is not reversible in time. In practice, and in absence of domain knowledge

that is not reflected in the input data, most real relations are better described as acausal.

136

Another aspect of when this method should be applied becomes evident when one

needs to execute acausal rules. The question is how one can reference future values in the

present? We must emphasise that using future values is just our test for distinguishing

among causality and acausality of the relationship between the decision attribute and the

condition attributes. As in the experiments in this thesis, when dealing with saved data,

the future values are readily available in the next records. If we need to predict the

decision attribute in real-time, then one could use rules generated by the causal method,

even if they are less accurate than the acausal rules. In such cases the relationship would

not be called causal.

Another important point is that we have been using the quality of decision rules (or

trees), versus other representations to choose the type of the relationship at work. That

choice is because in a decision rule there is a distinguished decision attribute, whose time

of observation is assumed to be the current time. This assumption would not be valid in

an association rule, where one or more attributes’ values are associated with the values of

other attributes. For example, (A = a) and (B = b) → (C = c) and (D = d) is an association

rule, stating that if one observes certain values for attributes A and B, then one can also

expect to see certain values for C and D. There is no single distinguished attribute that

could serve as denoting the current time, so association rules and other knowledge

representations with a similar feature cannot be used in TIMERS.

6.2 The Main Limitations of TIMERS

Our approach considers a set of input, namely sequential data, that is more restrictive

than what is acceptable to software such as TETRAD and CaMML, so we do not attempt

137

to solve the causality problem in a broad sense. While we consider the inclusion of a

temporal order between the possible causes and effects as intuitive, using a rule

discoverer to select the relevant attributes for predicting the condition attribute is not

always reliable. We have encountered cases where obviously wrong choices in condition

attributes were made because with those particular data, better rules could be generated

by using those attributes. Fortunately in most cases the quality of the rules that used

irrelevant attributes were not very high, and we were able to discard the results.

Another point is that while TIMERS’ running time is usually good (classification rule

discoverers are usually fast), if the user is interested in analysing a number of attribute’s

influence on each other, then the algorithm has to be run many times, and the results

integrated in a dependence diagram. Bayesian methods usually do that by default. More

generally, the user has to specify the values of six parameters for the TIEMRS method,

and this requirement implies that the user must have a good understanding of

characteristics of the input data.

 TIMERS exploits the sequential nature of its input data to discover causality and

acasuality, which creates a restriction on the types of input data that are appropriate for

analysis with this approach. While causal Bayesian methods can be used on census type

data, for example, where each record comes from a different source and may be collected

at different times, the data suitable for TIMERS must obey a strict temporal order.

Another characteristic of this method is that if the domain of the attributes can take on

many values (the attributes are real-valued, for example), and there are not enough

observations to sample all the values sufficiently, then the decision rules may be of poor

quality, and no causal relationship may be detected. To remedy this problem, we suggest

138

that if an attribute takes on many different values compared with the number of input

records, then the user should discretise that attribute to help in the process of rule

discovery.

A potential pitfall should be mentioned. Suppose a person chooses a reversible

operator, and applies it to the values of a number of attributes. Would this system be

labelled as acausal? If the values produced after each application of the function are never

repeated, then our method cannot discover reliable classification rules, and the method

refrains from giving a verdict. If, however, the results are cyclic, then the method may

well find relationships in both directions, and the verdict will be acausal. However, cyclic

observations can imply cyclic causes and effects, which we consider to be of no interest

in this work.

To summarise: (1) TIMERS is scalable in the number of attributes, but may need

several runs in case the user is interested in predicting many attributes. (2) It is intuitive

in that it strictly requires time to pass between causes and effects. (3) The rule discoverer

may not choose the relevant attributes, and frequently, choosing irrelevant attributes

results in rules with poor quality. (4) TIMERS usually performs much better than other

methods when given the suitable sequential data, but the restrictions on the suitable type

of data limit its applicability. (5) The domain expert may need to observe the data and

perform operations such as discretisation to obtain more reliable results.

6.3 Summary

We have presented a method to discover and distinguish between instantaneous,

causal, and acausal relationships between a decision attribute and a set of condition

139

attributes. The proposed method is based on the assumption that the passage of time and

causality are closely related.

TIMERS tests to see whether referring to condition attribute values that appear at

different time steps increases the accuracy of the prediction of a decision attribute’s

value. If not, then the relationship is instantaneous. If including a time difference between

the attribute observations results in better prediction, then a distinction is made as to

whether the relationship is causal (previous values of the condition attributes determines

the present value of the decision attribute) or acausal (succeeding values determines the

present value of the decision attribute). Each test is performed after an appropriate type of

temporalisation. We used the accuracy values of the rules as an indication of the

appropriateness of the temporalisation method, and hence the type of the relationship. In

general any other measurement can be used. This method works with different underlying

rule-discovery programs, as evidenced by employing two very different programmes,

C4.5 and CART.

The resulting rules show us which attributes are important in predicting the value of

the decision attribute. They also show how the relationship is formed. For example, in the

Louisiana weather data, the soil temperature an hour before the current time had the most

importance in determining the soil temperature [38].

The rule sets are useful by themselves, but to help the user better understand them,

dependence diagrams graphically show which attributes take part in the process of

classification. The strength of the relations among the condition attributes and the

decision attribute is also displayed. The user thus sees how the attributes influence each

other.

140

The TIMERES method can be applied to any one-dimensional data. The similarities

between a spatial line and the arrow of time make this generalisation intuitive. When

there is no significance between moving backwards or forwards in the data, as non-

temporal, on-dimensional data, there is no need to distinguish the resulting rules as causal

or acausal.

The TimeSleuth package includes executables and source code in Java, as well as

help and example files. It can be downloaded freely from

http://www.cs.uregina.ca/~karimi/doanloads.html.

141

References

[1] Agrawal R. and Srikant R., Mining Sequential Patterns, Proceedings of the

International Conference on Data Engineering (ICDE’1995), Taipei, Taiwan, March

1995.

[2] Aldous, D., and Fill J.A., Reversible Markov Chains and Random Walks on Graphs,

Book in preparation, http://stat-www.berkeley.edu/~aldous/RWG/book.html.

[3] Antunes, C. and Oliveira, A., Using Context-Free Grammars to Constrain Apriori-

based Algorithms for Mining Temporal Association Rules, Workshop on Temporal Data

Mining (KDD2002), Edmonton, Canada, July, 2002.

[4] Baggott, J., The Meaning of Quantum Theory: A Guide for Students of Chemistry and

Physics, Oxford Science Publications, 1992.

[5] Bennett, C. H., Logical Reversibility of Computation, IBM Journal of Research and

Development 17:525-532, November, 1973.

[6] Berndt, D. J. and Clifford, J., Finding Patterns in Time Series: A Dynamic

Programming Approach, Advances in Knowledge Discovery and Data Mining. U.M.

142

Fayyad, G. Piatetsky-Shapiro, P. Smyth, et al. (eds.), AAAI Press/ MIT Press, 1996, pp.

229-248,

[7] Bertsekas, D.P., and Tsitsiklis, J.N., Introduction to Probability, Athena Scientific,

2002.

[8] Blake, C.L and Merz, C.J., UCI Repository of machine learning databases

http://www.ics.uci.edu/~mlearn/MLRepository.html. Irvine, CA: University of

California, Department of Information and Computer Science, 1998.

[9] Bowes, J., Neufeld, E., Greer, J. E. and Cooke, J., A Comparison of Association Rule

Discovery and Bayesian Network Causal Inference Algorithms to Discover Relationships

in Discrete Data, Proceedings of the Thirteenth Canadian Artificial Intelligence

Conference (AI'2000), Montreal, Canada, 2000.

[10] Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. Classification and

Regression Trees. Wadsworth Inc., 1984.

[11] Brin, S., Motwani, R., Tsur, D. and Ullman, J., Dynamic Itemset Counting and

Implication Rules for Market Basket Data, Proceedings of 1997 ACM SIGMOD,

Montreal, Canada, June 1997.

[12] Chatfield, C., The Analysis of Time Series: An Introduction, Chapman and Hall,

1989.

[13] Chickering, D., Geiger, D., and Heckerman, D., Learning Bayesian Networks is NP-

Hard, Technical Report MSR-TR-94-17, Microsoft Research, 1994.

[14] Chow, T.L., Mathematical Methods for Physicists: A Concise Introduction,

Cambridge University Press, 2000.

[15] Clocksin, W.F., Melish, C.S, Programming in Prolog, Springer Verlag, 1984.

143

[16] Durand-Lose, J. O., Reversible Space-Time Simulation of Cellular Automata,

Rapport de Recherche Numéro 1177-97, Université Bordeaux I, 1997.

[17] Feinberg, G., Possibility of Faster-Than-Light Particles, Physical Review 159 N5,

1967, pp.1089-1105.

[18] Freedman, D. and Humphreys, P., Are There Algorithms that Discover Causal

Structure?, Technical Report 514, Department of Statistics, University of California at

Berkeley, 1998.

[19] Granger, C., Investigating Causal Relations by Econometrics Models and Cross-

Spectral Methods, Econometrica, volume 37, 1969, pp. 424-438.

[20] Grefenstette, J.J., Ramsey, C.L., and Schultz, A.C, Learning Sequential Decision

Rules Using Simulation Models and Competition, Machine Learning 5(4), 1990, pp. 355-

381.

[21] Guralnik, V., Wijesekera, D. and Srivastava, J., Pattern Directed Mining of

Sequence Data, Proceedings of the Fourth International Conference on Knowledge

Discovery & Data Mining (KDD’1998), 1998.

[22] Hawking, S.W., Thorne, K.S., Novikov, I., Ferris, T., and Lightman, A., The

Future of Spacetime, Norton, 2002.

[23] Hawking, S.W., The Universe in a Nutshell, Bantam Books, 2001.

[24] Heckerman, D., A Bayesian Approach to Learning Causal Networks, Microsoft

Technical Report MSR-TR-95-04, Microsoft Corporation, May 1995.

[25] Heckerman, D., Geiger, D. and Chickering, D.M., Learning Bayesian Networks: The

Combination of Knowledge and Statistical Data, Machine Learning, 20(3), pp. 197-243.

1995.

144

[26] Höppner, F., Knowledge Discovery from Sequential Data, PhD dissertation,

Fachbereich für Mathematik und Informatik der Technischen Universität Braunschweig,

2003.

[27] Höppner, F., Discovery of Temporal Patterns: Learning Rules about the Qualitative

Behaviour of Time Series, Principles of Data Mining and Knowledge Discovery

(PKDD'2001), 2001.

[28] Humphreys, P. and Freedman, D., The Grand Leap, British Journal of the

Philosophy of Science 47, pp. 113-123, 1996.

[29] Johnson, G., A Shortcut Through Time: The Path to the Quantum Computer, New

Alfred A. Knopf, New York, 2003.

[30] Kadous, M. W., Learning comprehensible descriptions of multivariate time series,

The 16th International Conference on Machine Learning, pp. 454-463, 1999.

[31] Kari, J., Reversibility of 2D cellular Automata is Undecidable, Physica D, 45:379-

385, 1990.

[32] Karimi, K., and Hamilton, H.J., Temporal Rules and Temporal Decision trees: A

C4.5 Approach, Technical Report CS-2001-02, Department of Computer Science,

University of Regina, December 2001.

[33] Karimi, K. and Hamilton, H.J., Finding Temporal Relations: Causal Bayesian

Networks vs. C4.5, The Twelfth International Symposium on Methodologies for

Intelligent Systems (ISMIS'2000), Charlotte, NC, USA, October 2000, pp. 266-273.

[34] Karimi, K. and Hamilton, H.J., Learning With C4.5 in a Situation Calculus Domain,

The Twentieth SGES International Conference on Knowledge Based Systems and Applied

Artificial Intelligence (ES2000), Cambridge, UK, December 2000, pp. 73-85.

145

[35] Karimi, K. and Hamilton, H.J., Logical Decision Rules: Teaching C4.5 to Speak

Prolog, The Second International Conference on Intelligent Data Engineering and

Automated Learning (IDEAL’2000), Hong Kong, December 2000, pp. 85-90.

[36] Karimi, K., and Hamilton, H.J. TimeSleuth: A Tool for Discovering Causal and

Temporal Rules, The 14th IEEE International Conference on Tools with Artificial

Intelligence (ICTAI’2002), Washington DC, November, 2002, pp. 375-380.

[37] Karimi, K., and Hamilton, H.J., Distinguishing Causal and Acausal Temporal

Relations, The Seventh Pacific-Asia Conference on Knowledge Discovery and Data

Mining (PAKDD'2003), Seoul, South Korea, April/May 2003, pp 234-240.

[38] Karimi, K. and Hamilton H.J., Using TimeSleuth for Discovering Temporal/Causal

Rules: A Comparison, The Sixteenth Canadian Artificial Intelligence Conference

(AI'2003), Halifax, Nova Scotia, Canada, June 2003, pp. 175-189.

[39] Karimi, K., and Hamilton, H.J., From Temporal Rules to One Dimensional Rules,

Proceedings of the Workshop on Causality and Causal Discovery, Technical Report CS-

2004-02, Kamran Karimi (Ed.). Department of Computer Science, University of Regina,

May 2004. pp 30-44.

[40] Karimi, K., Mehrandezh, M., and Hamilton, H.J., A Proposal for Self-Recognition in

Robot Programming, The 18th Annual Canadian Conference on Electrical and Computer

Engineering (CCECE'2005), Saskatoon, Canada, May 2005.

[41] Kemeny, J.G., and Snell, J.L., Finite Markov Chains, Van Norstrand, New York,

1960.

146

[42] Kennett, R.J., Korb, K.B., and Nicholson, A.E., Seabreeze Prediction Using

Bayesian Networks: A Case Study, Proc. Fifth Pacific-Asia Conference on Knowledge

Discovery and Data Mining (PAKDD'2001). Hong Kong, April 2001.

[43] Keogh, E. J. and Pazzani, M. J., Scaling up Dynamic Time Warping for Data Mining

Applications, The Sixth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD’2000), August 2000.

[44] Korb, K. B. and Wallace, C. S., In Search of Philosopher's Stone: Remarks on

Humphreys and Freedman's Critique of Causal Discovery, British Journal of the

Philosophy of Science 48, 1997, pp. 543-553.

[45] Koza, J. R. and Rice, J. P. Automatic Programming of Robots using Genetic

Programming. The Tenth National Conference on Artificial Intelligence, Menlo Park,

CA, USA, 1992.

[46] Krener, A. J., Acausal Realization Theory, Part I; Linear Deterministic Systems.

SIAM Journal on Control and Optimization, Vol 25, No 3, 1987, pp. 499-525.

[47] Levesque, H. J., Reiter, R., Lespérance, Y., Lin, F. and Scherl. R., GOLOG: A Logic

Programming Language for Dynamic Domains, Journal of Logic Programming, 31,

1997, pp. 59-84.

[48] Levy, S., Artificial Life: A Quest for a New Creation, Pantheon Books, 1992.

[49] Lin F. and Reiter, R., Rules as actions: A Situation Calculus Semantics for Logic

Programs. Journal of Logic Programming Special Issue on Reasoning about Action and

Change, 31(1-3), 1997, pp.299-330.

147

[50] Li, Y., Ning, P., Wang X.S., and Jajodia, S., Discovering Calendar-based Temporal

Association Rules, Proceedings of the 8th International Symposium on Temporal

Representation and Reasoning (TIME‘2001), Italy, June 2001, pp. 111-118.

[51] Lin, J, Keogh, E. and Truppel, W., Clustering of streaming time series is

meaningless, The eighth ACM SIGMOD Workshop on Research Issues in Data Mining

and Knowledge Discovery, San Diego, California, USA, 2003, pp. 56-65.

[52] Lindley, D., Where does the Weirdness Go?, Vintage, 1997.

[53] Mannila, H., Toivonen, H. and Verkamo, A. I., Discovering Frequent Episodes in

Sequences, Proceedings of the First International Conference on Knowledge Discovery

and Data Mining, 1995, pp. 210-215.

[54] McCarthy, J. and Hayes, P. C, Some Philosophical Problems from the Standpoint of

Artificial Intelligence. Machine Intelligence 4, 1969.

[55] Metropolis, N., Rosenbluth, A. W., Rosenbluth, N., Teller, A. H., and Teller, E.

Equation of state calculation by fast computing machines. Journal of Chemical Physics

21: 1087-1092, 1953.

[56] Mitchell, T., Machine Learning, McGraw Hill, 1997.

[57] Moore, R. C., The Role of Logic in Knowledge Representation and Commonsense

Reasoning, Readings in Knowledge Representation, Morgan Kaufmann, 1985, pp. 335-

341.

[58] Morita, K., Computation Universality of One-Dimensional Reversible Cellular

Automata. Information Processing Letters, 42:325-329, 1992

[59] Morrison, M.A., Understanding Quantum Physics: A User’s Manual, Prentice Hall,

1990.

148

[60] Nadel, B.A., Constraint Satisfaction Algorithms, Computational Intelligence, No 5,

1989.

[61] Oates, T. and Cohen, P. R., Searching for Structure in Multiple Streams of Data,

Proceedings of the Thirteenth International Conference on Machine Learning, 1996, pp.

346 – 354.

[62] Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference, Morgan Kaufmann Publishers, 1988.

[63] Pearl, J., Causality: Models, Reasoning, and Inference, Cambridge University Press,

2000.

[64] Penrose, R., The Emperor's New Mind: Concerning Computers, Minds, and the

Laws of Physics, Oxford University Press, 1989.

[65] Poole, D., Decision Theory, the Situation Calculus, and Conditional Plans,

Linköping Electronic Articles in Computer and Information Science, Vol. 3: nr 3, 1998,

http://www.ep.liu.se/ea/cis/1998/008.

[66] Quinlan, J. R., C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993.

[67] Roddick, J.F. and Spiliopoulou, M., Temporal Data Mining: Survey and Issues,

Research Report ACRC-99-007. School of Computer and Information Science,

University of South Australia, 1999.

[68] Russel, S. and Norvig, P., Artificial Intelligence: A Modern Approach, Prentice Hall

International, 1995.

[69] Sætrom, P. and Hetland, M.L., Unsupervised Temporal Rule Mining with Genetic

Programming and Specialized Hardware, International Conference on Machine Learning

and Applications (ICMLA'2003), 2003.

149

[70] Scheines, R., Spirtes, P., Glymour, C. and Meek, C., Tetrad II: Tools for Causal

Modeling, Lawrence Erlbaum Associates, Hillsdale, NJ, 1994.

[71] Scheines R, Spirtes P, Glymour C, Meek C, Richardson T., The TETRAD Project:

Constraint-Based Aids to Causal Model Specification, Multivariate Behavioral Research,

33, 1998, pp. 65-118.

[72] Schwarz, R. J. and Friedland B., Linear Systems. McGraw-Hill, New York. 1965.

[73] Seabra Lopes, L. and Camarinha-Matos, L.M. Feature Transformation Strategies for

a Robot Learning Problem, Feature Extraction, Construction and Selection. A Data

Mining Perspective, H. Liu and H. Motoda, Editors, Kluwer Academic Publishers, 1998.

[74] Shafer, G., Causal Relevance. Reasoning with Uncertainty in Robotics, Lecture

Notes in Artificial Intelligence 1093, 1996, pp. 187-208.

[75] Shafer, G., The Art of Causal Conjecture, The MIT Press, 1996.

[76] Silverstein, C., Brin, S., Motwani, R. and Ullman J., Scalable Techniques for Mining

Causal Structures, Proceedings of the 24
th
 VLDB Conference, New York, USA, 1998, pp.

594-605.

[77] Sloane, N.J.A., and Wyner A.D., Editors, Claude Elwood Shannon: Collected

Papers, New York: IEEE Press, 1993.

[78] Spirtes, P. and Scheines, R., Reply to Freedman, In McKim, V. and Turner, S.

(editors), Causality in Crisis, University of Notre Dame Press, 1997, pp. 163-176.

[79] Tooley, M. (Ed.), Analytical Metaphysics: A Collection of Essays, Garland

Publishing, Inc., 1999.

[80] Van Le, T. Techniques of Prolog Programming. John Wiley & Sons, 1993.

150

[81] Wallace, C. and Boulton, D., An Information Measure for Classification, Computer

Journal 11:185-194, 1968.

[82] Wallace, C., Korb, K., and Dai, H., Causal Discovery via MML, 13
th
 International

Conference on Machine Learning (ICML'1996), 1996, pp. 516-524.

[83] Witten, I.A., and Frank, E., Data Mining: Practical Machine Learning Tools and

Techniques with Java Implementations, Morgan Kaufmann, 2000.

[84] Wong, S.K.M., Butz, C.J., and Wu, D., On the Implication Problem for Probabilistic

Conditional Independency, IEEE Transactions on Systems, Man, and Cybernetics, Part

A: Systems and Humans, Vol. 30, No. 6, November 2000, pp. 785-805.

[85] Zadeh, L., Causality is undefinable, Abstract of a Lecture Presented at the BISC

Seminar, http://www.cs.berkeley.edu/~nikraves/zadeh/Zadeh2.doc, University of

California, Berkeley, 2001.

[86] http://explorer.ndic.state.nd.us/. Our data came from a sample CD.

[87] http://www.cs.uregina.ca/~karimi/downloads.html/URAL.java

[88] http://typhoon.bae.lsu.edu/datatabl/current/sugcurrh.html. Contents change.

[89] http://poli.haifa.ac.il/~levi/inference.html

[90] http://mathworld.wolfram.com/Likelihood.html

[91] http://www.phil.cmu.edu/projects/tetrad/tet3/chp2.htm

[92] TETRAD Project Homepage. http://www.phil.cmu.edu/projects/tetrad/tet3/chp2.htm

[93] TETRAD Download Site. http://www.phil.cmu.edu/projects/tetrad_download/

151

Appendix A

TimeSleuth’s Output in Prolog for the Robot’s x

Movements

:- op(800, xfx, ule).

:- op(800, xfx, ug).

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 0) :- OriginalDecision_t1 = 2, X_t1 = 0.

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 0) :- OriginalDecision_t1 = 0, X_t1 = 0.

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 0) :- OriginalDecision_t1 = 2, X_t1 = 1.

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 0) :- OriginalDecision_t1 = 1, X_t1 = 0.

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 1) :- OriginalDecision_t1 = 0, X_t1 = 1.

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 1) :- OriginalDecision_t1 = 3, X_t1 = 0.

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 1) :- OriginalDecision_t1 = 1, X_t1 = 1.

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 1) :- OriginalDecision_t1 = 2, X_t1 = 2.

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 2) :- OriginalDecision_t1 = 0, X_t1 = 2.

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 2) :- OriginalDecision_t1 = 3, X_t1 = 1.

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 2) :- OriginalDecision_t1 = 2, X_t1 = 3.

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 2) :- OriginalDecision_t1 = 1, X_t1 = 2.

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 3) :- OriginalDecision_t1 = 0, X_t1 = 3.

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 3) :- OriginalDecision_t1 = 3, X_t1 = 2.

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 3) :- OriginalDecision_t1 = 2, X_t1 = 4.

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 3) :- OriginalDecision_t1 = 1, X_t1 = 3.

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 4) :- OriginalDecision_t1 = 3, X_t1 = 3.

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 4) :- OriginalDecision_t1 = 0, X_t1 = 4.

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 4) :- OriginalDecision_t1 = 1, X_t1 = 4.

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 4) :- OriginalDecision_t1 = 2, X_t1 = 5.

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 5) :- OriginalDecision_t1 = 1, X_t1 = 5.

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 5) :- OriginalDecision_t1 = 0, X_t1 = 5.

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 5) :- OriginalDecision_t1 = 2, X_t1 = 6.

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 5) :- OriginalDecision_t1 = 3, X_t1 = 4.

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 6) :- OriginalDecision_t1 = 1, X_t1 = 6.

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 6) :- OriginalDecision_t1 = 0, X_t1 = 6.

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 6) :- OriginalDecision_t1 = 3, X_t1 = 5.

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 6) :- OriginalDecision_t1 = 2, X_t1 = 7.

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 7) :- OriginalDecision_t1 = 1, X_t1 = 7.

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 7) :- OriginalDecision_t1 = 3, X_t1 = 6.

152

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 7) :- OriginalDecision_t1 = 3, X_t1 = 7.

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 7) :- OriginalDecision_t1 = 0, X_t1 = 7.

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 0).

/* ule unifies the left hand side or performs =< */

A ule B :- var(A), A = B.

A ule B :- A =< B.

/* ug unifies the left hand side or performs > */

A ug B :- var(A), A is B + 1.

A ug B :- A > B.

/* umember unifies a variable, or performs member() */

umember(A, B) :- var(A), [X|_] = B, A = X.

umember(A, B) :- member(A, B).

member(A, [A|_]).

member(A, [_|B]) :- member(A, B).

