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Abstract 
 

 

 

 

In this thesis, we present a solution to the problem of discovering rules from sequential 

data. As part of the solution, the Temporal Investigation Method for Enregistered Record 

Sequences (TIMERS) and its implementation, the TimeSleuth software, are introduced. 

TIMERS uses the passage of time between attribute observations as justification for 

judging the causality of a rule set. Given a sorted sequence of input data records, and 

assuming that the effects take time to manifest themselves, we merge the input records to 

bring potential causes and effects together in the same record. Three tests are performed 

using three different assumptions on the nature of the relationship: instantaneous, causal, 

or acausal. The temporal reversibility of a relationship in time is used to judge the 

relationship as potentially acausal, while reversibility is considered as evidence for 

judging the relationship as potentially causal. To visualise the attributes’ influence on 

each other, the thesis introduces dependence diagrams, which are graphs that connect 

condition attributes to decision attributes. We performed a series of comparisons between 

TIMERS and other causality discoverers, and also experimented with both synthetic and 

real temporal data for the discovery of temporal rules. The results show an improvement 

in the quality of the rules discovered with TIMERS. 
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Chapter 1  

 

Introduction 

 

This chapter provides an introduction to this thesis. Section 1.1 introduces some of 

the terms that are used in the thesis. Section 1.2 defines the problem that is being solved. 

Section 1.3 identifies the main contributions made by the thesis. To provide a general 

understanding of the solution, an overview of the approach is presented in Section 1.4. 

Finally, Section 1.5 provides an outline of the remainder of the thesis. 

 

1.1 Basic Definitions 

Suppose we have a set of attributes (variables) that describe a system. We may wish 

to know if the value of one attribute can be determined (predicted) by the values of the 

other attributes. The attribute whose value is being predicted is called the decision 

attribute, while the attributes whose values are used for prediction are called the 

condition attributes. A rule that relates certain values of the condition values to a value of 

the decision attribute is called a decision (or classification) rule. A decision rule takes the 

form of: if {<relation between condition attributes’ values>} then (<decision attribute’s 
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predicted value>), where the condition attributes appear on the left hand side of the rule, 

and the decision attribute appears on the right hand side. The placement of brackets is 

arbitrary and meant to increase the readability of the rules. An example rule is  

if {(a > 2)} then (b = true). 

The data used to derive the rules are called training data. A rule can be executed when 

the conditions in the left hand side of the rule are satisfied. If so, the rule yields the 

decision attribute’s predicted value. 

To determine the quality of the decision rules, we measure their accuracy. After the 

rules are derived, we can try them on the same data to see whether or not the values 

predicted for the decision attribute match the data. The results are called the training 

accuracy. For example, if the rules correctly predict the decision attribute’s value for 

training data 80% of the time, then the training accuracy is 80%. Alternatively, we can try 

the rules on data that were not used to derive the rules, and obtain the predictive 

accuracy. Predictive accuracy is usually lower than training accuracy because of the 

general tendency of rules to match the training data better than other datasets. This 

property is usually called overfitting. The data that are used to measure the predictive 

accuracy are called testing (or unseen) data. Both training and predictive accuracy can be 

used to measure the quality of the rules. 

A set of rules designates a relationship between the values of the condition attributes 

on one hand, and the value of the decision attribute on the other hand. In this thesis we 

propose techniques for discovering the nature of this relationship. 
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1.2 Problem Statement 

Given the sometimes-immense amounts of data gathered automatically by sensors in 

domains of scientific research and engineering, understanding relationships among the 

attributes can be a difficult undertaking. We may be interested in discovering properties 

of a system that is either inaccessible or very complex. Example systems include the 

weather, ocean currents, and environments on other planets. We may not have a theory 

for explaining the observations, or the theory may be hard to apply, as in the case of 

chaotic systems. In such cases, one can observe only some of the attributes, while the 

others remain hidden. It may not be possible to change some attributes, so 

experimentation may be limited or not possible. 

This thesis proposes a method for answering the following question: Given an 

ordered sequence of data, how is the value of a certain attribute related to the values of 

other attributes? Is it potentially caused by them? Or are they merely observed together 

(perhaps at the same time, or perhaps with time delays in between)? Is the relationship 

reversible? In other words, given the next values, can we retrodict (predict in reverse) the 

current values? 

More specifically, we consider the problem of discovering a relationship, in the form 

of a set of rules, from sequential data records. Each record contains the values of a set of 

attributes. The records come from the same source and are sorted according to a temporal 

(increasing/decreasing time) or linear (increasing/decreasing coordinate value) order. The 

aim is to investigate the relationships between the attributes of a system whose internal 

workings are not known. Such an investigation may be required when the system is a 

black box with hidden internals, or is very complex, or there is no access to the system, 
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for example, because it is too far from us. In such a case, a formal analysis of the system 

and the relationships implied by it may be hard or impossible.  

It may also be hard or impossible to influence the system in any way. So we may not 

be able to change some input parameters of the system to observe the effects on the other 

attributes. If so, then we call the system uncontrolled. For the problem being solved here, 

we do not require that the values of certain attributes be fixed in order to see how the 

other attributes change. However, if the system is controllable, then the user may wish to 

perform experiments by influencing certain attributes in a regimented fashion.  

If experimentation is possible then we can distinguish between input and output 

attributes, and we can change the input and observe the effects on the output. In such a 

case, if the values of the input attributes are determined independently of any output 

attribute, then we can restrict the set of attributes whose values are predicted (the decision 

attributes), to include only the output attributes. 

An example problem with an uncontrolled system is that of predicting the weather. 

The data may consist of value for several attributes, recorded every minute, hour, or day. 

In this case, most if not all of the attributes are outside our control. Nonetheless, we may 

want to predict the value of one attribute using the others.  

A common assumption in rule discovery is that the value of a decision attribute 

depends on the value of other attributes in the same record, often gathered at the same 

time. In this thesis, we assume that the value of the decision attribute may be better 

determined by referencing the values of condition attributes in the preceding or following 

records. In our weather example, the temperature now may depend more on the wind 

speed an hour ago than the wind speed now. With this assumption, the rules that are 
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created predict the value of a decision attribute at some time point, by referencing 

observations made before and/or after that time point. 

Considering that a sequence of data records has a direction of progression, i.e., the 

order in which it has been sorted, the rules we derive from them can execute in forward 

and/or backward directions relative to the sorting order. Such rules are called sequential 

in general. In the weather example, the records are ordered temporally. If the data records 

signify temporal events, as in the values of the attributes of a system observed over time, 

then the resulting rules are temporal. Temporal rules imply potential causal or acausal 

relations.  

As will be seen in the thesis, we define causality according to a common sense 

understanding of the term, but other definitions are possible. In the common sense 

definition, causes always precede the effects temporally. To simplify the analysis we 

assume that any time we see the causes we can expect to see the effects. Of course, 

sometimes we may see the effects without first observing the causes. This is a syntactic 

definition of causality, as we are only concerned with the form of a causal relationship, 

and not it meaning or semantics. 

In this thesis, when we refer to a relationship as causal if the decision attribute's 

current value is determined by the value of at least one attribute observed in the past. This 

view is in line with many people’s intuitive understanding of causality. When we refer to 

a relationship as acausal, then we consider it possible that the decision attribute’s value is 

not caused by other attributes’ values, but happens to be seen together, with some time 

interval between them. There may be hidden common causes that are producing the 

observed temporal pattern. 
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We represent a causal relationship with a causal ruleset, which is a set of rules where 

in each rule the previous values of the condition attributes are used to predict the current 

value of the decision attribute. Similarly, an acausal relationship is represented by an 

acausal ruleset, where previous values of condition attributes may be used to predict the 

value of the decision attribute, but, relative to the decision attributes’ time of appearance, 

at least one condition attribute’s value should come from the a succeeding time step. In 

both causal and acausal rule sets no rule references the current value of any condition 

attribute. 

As an example, it may be possible to predict the wind speed at any hour by using the 

recorded value of the wind speed from the preceding or succeeding hour, but one value 

may not be causing the other. In this case, the wind speeds at two consecutive hours form 

a temporal pattern that could be the result of meteorological factors that have escaped our 

observation. So the wind speeds are not independent of each other, but they have no 

causal relationship. 

Sequential data records can also take the form of a sequence of records collected 

along a linear path through space, for example, along a road or going down a well. We do 

not look for causality in such a non-temporal context because unlike the direction of the 

arrow of time, which appears to point in one direction, one can traverse a spatial line in 

either direction. Thus, there is no need to distinguish one direction as more significant 

[39]. In a linear spatial domain, assuming the system is not changing during the 

observation period, we could have observed the same data, but in reverse order, if we had 

started from the other end.  
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As an example, suppose that we are moving along a straight road, and observe the tar 

content of the asphalt every 2 metres. At the arbitrarily-named point 1, we measure the 

tar contents to be 70%, and at point 2 (two metres away), it is measured to be 65%. The 

result is the sequence of observations <…, 70%, 65%, …>. If we had started from the 

opposite end, we would have observed point 2 before point 1, and the sequence would 

contain the values in reverse: <…, 65%, 70%, …>. Observing events in reverse order is 

not possible in a temporal domain.  

 

1.3 Contributions of the Thesis 

This thesis makes five primary contributions, which we identify in this section. They 

are explained further in the text.  

First, the thesis defines the problem of discovering sequential rules from sequential 

data, where each sequential rule refers to condition attributes that appear in a record other 

than that of the decision attribute. This rule discovery process can be performed in the 

context of a complex, closed, or perhaps otherwise inaccessible system. A sequential rule 

can be derived from sequential data records gathered from spatial (one-dimensional) or 

temporal data. If the data are of a temporal nature, then the results are temporal rules. 

Thus, according to our definitions, a temporal rule is a restricted type of a sequential rule. 

Temporal rules are often created in a form that refers to previous or current attribute 

values in order to predict the decision attribute’s value at a future time. The second 

contribution of this thesis is a generalisation of the direction of time, that allows a 

temporal rule to refer to condition attributes’ values that are observed in the preceding or 

succeeding records relative to the record where the value of the decision attribute is 
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observed. Referring to the next records may not be suitable for real-time execution of 

temporal rules, because when such rules are executed they are not able to give a verdict 

concerning the current situation until sometime in the future. However, rules that refer to 

the succeeding values are applicable in cases where stored temporal data is available and 

rules with the highest possible training accuracy or predictive accuracy are desired. In 

such a case, for most records, the future and past observations are available during 

processing. Example applications are the repair of faulty observations, and the filling of 

missing observations. For linear spatial data, the same technique can be used by 

substituting notions of nearby previous and next locations (neighbourhood), for the past 

and future. 

The third contribution is the introduction of a set of tests to judge the potential 

causality of a relationship that is expressed as a set of rules. It is often hard to ascertain 

that there is a causal relationship between two events, so our judgment in this regard 

should be considered as a hint. Knowing the nature of a relationship helps us to 

understand, and possibly better control, the phenomenon that is under investigation. Our 

tests can be applied to sequential temporal data. 

Fourth, we show that the problem of temporal rule discovery is similar to that of 

determining whether or not a relationship is time-reversible. The reversibility of a system 

is of importance in fields such as automata theory, and especially in quantum computing. 

Reversible processes exhibit unique characteristics. When done slowly, they require very 

little energy consumption. They are also of essential value in quantum computing. 

Verifying the reversibility of the processes in a system is thus of importance from both 

theoretical and practical viewpoints. 
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The user may want to verify whether a process is reversible or not, but a formal 

analysis may be hard or impossible. We determine the reversibility of a relationship in 

simple sequences by attempting to predict a decision attribute’s value using only the 

previous or only the next values of the condition attribute. By our definitions, a causal 

relation can be reinterpreted as being irreversible, while an acausal relation can be 

reinterpreted as being reversible. Our treatment of time, which allows us to reference 

both the preceding and the succeeding records in the same rule, is more general than that 

normally considered in the literature on reversibility of temporal relationships, where one 

is assumed to be able to reference either the past or the future, but not both. 

The fifth contribution is the presentation of a graphical method, called the 

dependence diagram, to enable the user to view how the value of a decision attribute is 

determined by the condition attributes. It provides information concerning the attributes 

involved in the decision making process, and the degree of involvement. Decision rules 

usually concern only a single decision attribute. When given a number of input attributes, 

determining which one to choose as the decision attribute can be difficult. The user can 

try different candidates as the decision attribute, and may want to know which choice is 

best. A dependence diagram can help the user in this regard by making it easier to 

understand the decision rules.  

 

1.4 Overview of the Approach 

Part of the solution that we propose to the problems outlined in Section 1.4 is 

encapsulated in the Temporal Investigation Method for Enregistered Record Sequences 

(TIMERS). TIMERS begins by pre-processing the data to make them ready for use with 
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conventional rule or tree discovery methods. Then rules are generated, and in the case of 

temporal data, their quality (training or predictive accuracy) is used to form a judgement 

on the causal or acausal nature of the relationship that they express. 

TIMERS relies on a rule/tree generator for functioning. To demonstrate that the 

algorithm works regardless of the underlying rule or tree generator, we perform 

experiments using C4.5  [66] for classification, and CART [10] for both classification 

and regression.  

TIMERS allows the user to perform a number of tests, and based on the results, 

decide on the nature of the relationship. The conditions that TIMERS requires for the 

tests to be meaningful are that the data originate from the same source and be sorted. The 

user must ensure that these conditions are satisfied before proceeding with the tests. 

To provide an informal introduction to TIMERS, we proceed in three stages. First, we 

describe the discovery of decision rules in general. Then we describe the discovery of 

temporal decision rules. Finally, we explain how an analysis of sets of temporal decision 

rules can form the basis for determining the acausality or causality of a relationship. 

A common form of input in many data mining and machine learning problems is a 

dataset consisting of a series of records or instances. Each record contains the value of 

several attributes. An example dataset is shown in Table 1.1. 

Table 1.1 Four records that contain values for Outlook, Temperature, and Play 

Outlook Temperature Play 

Sunny 25 Yes 

Rainy 13 No 

Overcast 20 Yes 

Sunny 10 No 

 

Table 1.1 contains records that show the values of the attributes Outlook, 

Temperature, and Play. Extracting information from such records has been an active and 
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well established area of research, referred to as concept learning, classification, or 

learning decision rules. The assumption is that there may be relations among the different 

attributes in each record. In a classification problem, the aim is to determine the value of 

the decision attribute, using the values of the condition attributes. For Table 1.1 we could 

set the decision attribute to be Play and try to determine when we can play, by using the 

values of Outlook and Temperature. The process of selecting a value for Play can be 

performed by creating a decision tree or a set of decision rules. A decision tree is a tree 

structure where at each node one or more attributes’ values are tested, and based on the 

result, a branch is selected [56]. Following that branch, we may come to another node, 

and perform another test. Finally we will reach a leaf, and then a value for the decision 

attribute is determined. Figure 1.1 shows an example decision tree. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 A decision tree for the records in Table 1.1 

 

In a decision rule, values of certain attributes are tested at the left hand side, known as 

the antecedent of the rule. If all the conditions are met, then a value for the decision 

attribute is proposed by the right hand side, or consequent, of the rule. An example 

decision rule is:  

if {(Outlook = sunny) and (Temperature > 20)} then (Play = yes).  Rule 1.1 

rainy 

no 
yes 
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no 
 

yes 
no 
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Decision trees and decision rules are closely related, and one can create one 

representation, given the other. C4.5, which is a widely referenced and commonly used 

classification program, constructs decision trees first, and then derives decision rules 

from them. Classical examples of data used for classification include the iris and soybean 

datasets [8], which have been used for classifying the decision attribute (type of the iris or 

sickness of a soybean plant).  

Other related problems include discovering association rules, where the appearance of 

certain values together are discovered, but no classification is performed. When 

discovering an association rule, no single attribute is set as the decision attribute. A 

prominent representative of this problem domain is market basket analysis [11], which 

concerns the discovery of relations among different items sold together at a store. An 

example would be the observation that certain food items are usually bought together. 

The usual assumption in datasets for classification and association rule mining is that 

their records are not related to each other in terms of: (1) the time of observation, and (2) 

the source or origin. For example, in the market basket analysis (introduced in Chapter 

2), the records come from different customers (different sources) and with no particular 

order in time (no temporal ordering). The same applies for census data, where a number 

of attributes are filled with values pertaining to different people or things, possibly over a 

period of time.  

These approaches do not require any constraints on the input dataset, and hence work 

in more cases than the temporal approach presented here, but as we will see, given the 

proper input, the temporal approach works better than the alternatives. 
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We take a classification approach, in that we investigate the relationship of a decision 

attribute with other condition attributes. The traditional approach is to look for a 

relationship between the decision attribute and other attributes within the same record. 

One example is Rule 1.1, as previously presented. This method may not produce good 

results if there is an inter-record relationship among the attributes, i.e., a relationship 

where the value of one attribute is related to a value in another record. For an inter-record 

relationship to be meaningful, we require that the records be produced from the same 

source. 

Given the assumption that the records are ordered, we can investigate to see if the 

previous records affect the current value of the decision attribute. The past affecting the 

present follows the normal direction of time. This direction coincides with our everyday 

observations of causality. If using the past condition attributes results in better decision 

making, then there may be a causal relation at work. Another possibility is that we may 

be observing a temporal pattern, which is not necessarily causal. For example, two 

attribute's values may be related to each other over time (first, one is observed, and after a 

while the other one's value is observed), but neither is causing the other. They may both 

have a hidden common cause that has escaped our attention. So the observation that a 

temporally ordered relationship exists between some attributes by itself does not justify 

the conclusion that causality is present. 

With our approach, temporal decision-making can be performed either with a 

decision tree or a set of decision rules. In either case the attributes should be qualified 

with their time of observation, because the same attribute can appear more that once in a 

rule, but at different times. A portion of a temporal decision tree [32] is shown in Figure 
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1.2, where yesterday's value of Outlook has been used to predict today's value of 

Outlook. 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 A portion of a temporal decision tree 

 

An example temporal rule is shown in Rule 1.2 below. 

if {(Outlookyesterday = sunny)} then (Outlooktoday = sunny). Rule 1.2. 

The time of occurrence of the decision attribute is called the current time. Extracting 

such a rule requires an input dataset in which records are ordered temporally, and 

observations are made on a regular basis, such as once a day. This may not necessarily be 

the case in Table 1.1. Also, as can be seen in Rule 1.2, the decision attribute can 

participate in the rule as a condition attribute at times other than the current time. Rule 

1.2 only covers a span of two days, hence "today" and "yesterday" are enough to qualify 

the attributes' time of observation. But if the rule involved more days, we use the current 

time as a reference. In this case we would obtain Rule 1.3 below. 

if {(Outlooktoday-1 = sunny)} then (Outlooktoday = sunny). Rule 1.3. 

We say that a temporal relationship that is not causal is acausal. We also call it a 

temporal association because the value of the decision attribute and the condition 

attributes are associated together over time. This informal definition is different from the 

sunny 

Sunnytoday 

Outlookyesterday 
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mainstream definition of a temporal association rule, where the attributes all appear at the 

same time, but the association is valid only during a certain time interval [50]. Formal 

definitions of these concepts will be presented in Chapter 3.  

To investigate the causality or acausality of a temporal relation, we consider the 

possibility that the decision attribute's value is determined by attributes not only in the 

previous records, but also in the next records, or both previous and next records. One 

example rule in this context would be Rule 1.4 below. 

if {(Outlookyesterday = overcast) and (Outlooktomorrow = rainy)} then (Outlooktoday = 

rainy). Rule1.4 

Again, the attributes' time of observation could be set relative to the decision 

attribute's time (current time) as in Rule 1.5(a), and in a more general notation, in Rule 

1.5 (b), where time T is assumed to always denote the time when the decision attribute's 

value is observed.  

if {(Outlooktoday-1 = overcast) and (Outlooktoday+1 = rainy)} then (Outlooktoday = rainy), 

Rule 1.5(a) 

if {(OutlookT-1 = overcast) and (OutlookT+1 = rainy)} then (OutlookT = rainy). Rule 

1.5(b) 

The unit of time progression depends on the rate at which observations were made to 

create the dataset. In Rules 1.4 and 1.5, the unit is a day, reflecting the assumption that 

the data was gathered daily. As an alternative, one can read "T+1" as "next" and "T-1" as 

previous, and use the same method for any "T±n" (read: n observations after or before).  
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To summarise this informal presentation, we assume three possibilities for a 

relationship. (1) A relationship is non-temporal if the values of condition attributes and 

the decision attribute are observed at the same time. In this case the relationship is best 

described as a traditional decision rule. Such a relationship is labelled instantaneous by 

our method. (2) A relationship is causal if only condition attributes from the past are used 

to predict the value of the decision attribute at the current time. This temporal 

requirement matches our intuitive understanding of causation. (3) A relationship is 

acausal if events from the future are used to predict the decision attribute at the current 

time. In such a relationship, the condition attributes’s values can belong to the past or 

future, but at least one value belongs to the future. 

To detect the nature of the relationship concerning a decision attribute, we perform 

three tests to see if the relationship is instantaneous, acausal, or causal. In the 

instantaneous case, we provide condition attributes from the same time as the decision 

attribute, and extract decision rules from the data. For the causality test, we include 

condition attributes from the past, and generate decision rules. For the acausal test, we 

include condition attributes from the past, as well as the future, and then generate rules to 

predict the decision attribute. The resulting rules' qualities (accuracy values) are then 

compared to each other, and the method that results in highest quality is chosen as an 

indication of the nature of the relationship. 

The main drawback of TIMERS is the constraint that the input data must be produced 

sequentially by the same system. As we will explain in Chapter 6, under certain 

conditions our method can make mistakes in declaring a relationship to be causal or 

acausal.     
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1.5 Thesis Outline 

The material in the thesis is presented according to the practice and theory principle. 

Namely, we have tried to introduced the concepts and methods informally first, and then 

present them formally later in the text. This approach was chosen in the hope of making 

the material easily understandable.  

The remainder of the thesis is organised as follows. Chapter 2 overviews the problem 

of temporal and causal knowledge discovery, and presents some existing approaches that 

solve aspects of this problem. Section 2.1 overviews the main approaches for discovering 

temporal patterns and relations. Section 2.2 describes how the concept the causality has 

been approached from physical and statistical perspectives. Section 2.3 presents the main 

approaches to causal discovery in computer science and introduces two programmes for 

causal discovery that use different methods for causal discovery from TIMERS.  

Chapter 3 presents the problem and the method in both formal and informal 

languages. In Section 3.1 we define what we mean by sequential data, temporal causality, 

and acausality. We also introduce temporalisation, which is the procedure we use to 

merge consecutive records together in different ways. This procedure allows us to bring 

the causes and the effects into the same record. As a result, we can use existing machine 

learning and data mining tools, which ordinarily do not search for relationships between 

records. Section 3.2 presents an algorithm for temporalisation, and Section 3.3 presents 

the TIMERS algorithm. Section 3.4 shows how by measuring the acausality or causality 

of a relation we are determining the reversibility or irreversibility of the system that 

generated the input data.   
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Chapter 4 describes the generation and presentation of temporal relations, which are a 

special form of sequential relations. Section 4.1 introduces TimeSleuth, the software that 

implements TIMERS. Section 4.2 introduces the dependence diagram, which is a 

visualisation method for better understanding the relationships among attributes in 

TIMERS’ output. These diagrams are meant for human use. In Section 4.3 we show how 

temporal classification rules, converted to Prolog [80] statements, can be used for 

planning purposes.  

Chapter 5 presents the results of experimenting with the TIMERS method. Section 

5.1 compares TIMERS with other causal discovery software. TIMERS accepts a more 

limited type of input than other causality discoverers described in the thesis, but TIMERS 

can achieve higher accuracy than other method on that kind of input. In Section 5.2 we 

apply classification and regression to temporal and spatial data. We show that regression 

and classification give consistent results. The similarity between temporal data and sorted 

one-dimensional spatial data is explored in this section by experiments on spatial data 

obtained from a well-drilling dataset.  

Chapter 6 discusses advantages and disadvantages of the proposed method and 

summarises the thesis. Section 6.1 describes when the introduced method can be applied. 

Section 6.2 details the strengths and limitations of TIMERS in the light of the lack of 

agreement on the concept of causality, and the consequent absence of an objective 

measure for determining causality. Section 6.3 summarises the findings of this thesis. 
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Chapter 2 

 

Background Knowledge 

 

In this chapter, we present some of the major tendencies and research areas in the 

subjects of discovering temporal and causal relations. Section 2.1 is concerned with 

approaches to discovering temporal rules, relations, or patterns without any claims as to 

any possible causality. In Section 2.2 we show that no clear consensus exists regarding 

the definition of causality. However, we see a general trend towards computable models 

of causality. Section 2.3 discusses the major approach in computer science to discovering 

causality, which is based on causal Bayesian networks. We introduce two different 

programmes, namely TETRAD and CaMML and demonstrate how they work by using 

examples. These programmes are used for comparison purposes in Section 5. 

 

2.1 Temporal Discovery 

The arrow of time is a unidirectional part of the spacetime continuum, as verified 

subjectively by the observation that we can remember the past, but not the future, or that 

we get older, but not younger. Objectively, there are a number of physical phenomena 



20

that point to this special property of time. A prominent example is the entropy of any 

closed system, which cannot decrease [23]. 

Temporal data are often represented as a sequence, sorted in a temporal order. 

Examples of studies of sequential data and sequential rules are given in [3, 20, 69]. For 

example, in [20], the authors provide a genetic algorithm solution to the problem of 

detecting rules that manoeuvre an airplane that is being chased by a missile in a two 

dimensional space. Discrete attributes such as speed, direction of the missile, turning rate 

of the airplane, etc. are measured during 20 time steps. It is assumed that after 20 steps 

the missile will stop the chase. The rules discovered in that paper form part of a plan, and 

the genetic algorithm changes parts of the plan to make them better suited to solving the 

problem. The rules are then used in a simulator to measure their effectiveness. Time is 

obviously the sequencing factor in this example. 

There are a number of general fields in the study of sequential data. A time series is a 

time-ordered sequence of observations taken over time [6, 12]. An example is the series 

of numbers <1, 3.5, 2, 1.7, …>. In a univariate time series, each observation consists of a 

value for a single attribute, while in a multivariate time series, each observation consists 

of values for several attributes. Most research on time series has assumed the presence of 

a distinguished attribute representing time, and numeric values for all other attributes. 

Attempts have been made to fit constant or time-varying mathematical functions to time 

series data [6]. A time series can be regular or irregular, where in a regular time series 

data are collected at predefined intervals. An irregular time series does not have this 

property, and data can arrive any time, with any temporal gap in between. A deterministic 

time series can be predicted exactly, while the future values in a stochastic time series 
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can only be determined probabilistically. The former is a characteristic of artificial and 

controlled systems, while the latter applies to most natural systems. Simple operations 

like determining the minimum or maximum values of certain attributes, finding trends 

(such as increases or decreases in the value of stocks), cyclic patterns (such as seasonal 

changes in the price of commodities), and forecasting are common applications of time 

series data. 

Many approaches to the discovery of rules from time series data involve pre-

processing the input by extracting features from the data. Global features include the 

average value, or the maximum value, while local features include an upward or 

downward change, or a local maximum value [30]. Another example of discovering 

temporal traits by pre-processing time series data is the discovery of increasing or 

decreasing trends before rule extraction [27]. While the study of time series is pursued 

widely, Keogh argues that the common method of using a window to extract information 

from a time series may not be useful or even meaningful, as similar results can be 

obtained from a randomly generated time series [51]. 

In [61], the phrase multiple streams of data is used to describe simultaneous 

observations of a set of attributes. The streams of data may come from different sensors 

of a robot, or the monitors in an intensive care united, for example. The values coming 

out of the streams are recorded at the same time, and form a time series. The data 

represented in Table 1.1 is an example of multiple streams of data, where three attributes 

are observed over time. In [54], an algorithm is presented that can find rules (called 

"structures" by the authors) relating the previous observations to the future observations. 
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Such temporal data appear in many application areas and a good overview can be found 

in [67]. 

An event sequence is a series of temporally ordered events, with either an ordinal 

time attribute (which gives the order but not a real-valued time) or no time attribute.  

Each event specifies the values for a set of attributes. A recurring pattern in an event 

sequence is called a frequent episode [53].  Recent research has emphasised finding 

frequent episodes with varying number of events between the key events that identify the 

event sequence.  Algorithms such as Dynamic Time Warping and its variants measure the 

similarity of patterns that are stretched differently over time [43]. These methods have 

not been applied to searching for relations in causal data. No claim is made as to whether 

or not they represent causal relationships. The main difference between an event 

sequence and a time series is that a time series is a sequence of real numbers, while an 

event sequence can contain attributes with symbolic domains.  

A market basket is traditionally defined as a set of Boolean attributes, each specifying 

if a particular item exists in the basket or not [10]. For example, given three products A, 

B, and C, an item can be <1, 1, 0> which means that the buyer picked products A and B 

but not C.  In market basket research, the aim is to find associations (patterns) among the 

attributes of interest. Unlike the frequent episodes or the time series, in this case there is 

no interest in discovering temporal patterns, since it is assumed that the market basket 

items, which form an itemset, come from different sources, thus one cannot assume any 

meaningful order among the items. This assumption puts market basket research in a 

category of its own. Market basket data can be used for the discovery of frequent 
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episodes if they are generated by the same system. [26] contains an extensive review of 

the methods of discovering knowledge from sequential data. 

Despite having different terminology, all the representations described so far in this 

section have the common characteristic of recording the values of some attributes and 

placing them together in a record. Time series, event sequences, and streams of data all 

attempt to find temporal rules (called patterns, episodes, and structures, respectively) 

from the input data. Each of these representations uses a different set of algorithms to 

solve its problems.  

 

2.2 Causal Discovery 

Modern physics is not based on intuitive ideas about time: There is no universal 

clock, and the only constant is the speed of light [22]. Each observer perceives time 

differently according to his speed relative to another observer. Ordinarily, physicists 

consider the speed of light to be an upper limit for the speed with which an event A can 

cause another event B [23]. There are theories about particles that can move faster than 

light. One example is the tachyon, which was first introduced by Feinberg [17].  

In the macroscopic world, moving faster than light may lead to contradictions, as the 

effect B can appear before the cause A. This possibility is a contradiction to the intuitive 

understanding of causality, and leads to a paradox: if a person can move faster than light, 

then perhaps he can return to his past and change the causes of his travel in time. An 

effect happening before its cause is called backward causation. As shown in [79], some 

philosophers do not consider this impossible or paradoxical. It is possible that in the 

absence of free will, we could go back to our past and not change anything that interferes 
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with our time travel. An implication of this assumption is that since we are not able to 

change anything, we would travel to the past again and again, and thus be stuck in a 

never-ending time loop.  

In this thesis we refer to apparent backward causation as acausality, and consider it to 

imply the presence of hidden common causes. The effects of such a common cause are 

spread over time, and so form a temporal association. This interpretation of the 

philosophical notion of backward causation acknowledges the temporal characteristics of 

the relationship, and avoids any temporal paradox. 

A physical concept related to this thesis is that of time-reversibility of physical laws. 

Most laws in physics are expressed in a time-reversible manner, meaning that they can be 

applied in either temporal direction. An example is the relationship between force and 

acceleration, f = m × a, which does not enforce any restrictions on the direction of time. 

While the previous formula might suggest that the force f is caused by the mass and the 

acceleration, we can re-arrange the formula to read a = f / m and interpret the formula as 

saying that force causes acceleration. The fact that many physical laws do not exhibit 

temporal asymmetry has prompted some researchers to consider them as incomplete 

approximations [64]. Others assume that there are two distinct types of physical laws. 

Time-symmetrical laws hold backwards in time, while asymmetrical laws are valid in 

only one direction [4]. 

However, another possible view is that a formula such as f = m × a shows an 

instantaneous physical relationship: the force at any one moment is related to the 

acceleration at that same moment. In other words, they are created together and one 

cannot exist without the other. An example shows why the common perception is that 
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force causes acceleration: when driving a car, pressing on the gas pedal may be 

interpreted as exerting more force. The resulting acceleration in then considered an effect 

of the force. However, changing the position of the gas pedal only starts a process that 

changes the amount of fuel delivered to the engine, which then increases the force 

generated by the engine. The instantaneous relationship between the force and the 

acceleration remains, though the relationship between pressing down the gas pedal and 

observing a change in speed is temporal (causal).  

A physical event that is asymmetrical in time is a mug falling from the table and 

breaking. This event is observed a lot more often than the reverse. This phenomenon is 

explained by the second law of thermodynamics, which states that the entropy of any 

closed system does not decrease. In physics, entropy by definition makes time one-

directional, as we define the direction of time to be that of increasing entropy. 

In classical Newtonian physics, causality is well-defined. As exemplified in a 

statement by Laplace, it was believed that if one knows the initial states of all the 

particles in the Universe, plus the applicable rules, one can predict the future or retrodict 

the past perfectly [59]. More specifically, given the current position value (x, y, z), the 

current momentum vector p, plus the forces acting on a macroscopic particle, in classical 

physics one can plot the trajectory of the particle and predict the future position and 

momentum [59]. Quantum theory, however, has placed severe restrictions on causality in 

the classical physics sense. According to the Heisenberg uncertainty principle, one cannot 

know both the position and the momentum of a particle with arbitrary precision. More 

precisely, ∆x × ∆p > 0, where the ∆ operator denotes the uncertainty in the value of its 

operand [59].  
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There is another example of how quantum physics is in disagreement with the 

intuitive understanding of causality. While in classical physics the interaction of a cause 

and its effect requires spatial proximity, quantum physics allows apparently instantaneous 

causal interactions between particles that are at arbitrary distances from each other. As an 

example, given a set of two entangled electrons, measuring the spin direction of one of 

them instantly determines the spin direction of the other one, thus establishing causal 

non-locality [52]. 

Granger causality, used mainly in economics contexts, puts clear emphasis on 

temporal precedence [19]. A Granger causal relationship exists when previous values of 

some attributes improve the prediction of a decision attribute’s value. Suppose we are 

observing two attributes xt and yt over time, and A is a set of attributes considered 

relevant to yt. We say xt granger-causes yt if there is a natural number h > 0 such that 

P(yt+h | A) < P(yt+h | A ∪ {xt, xt-1, …}), where P(a | b) is the probability of event a 

happening, given that even b has happened. 

For example, knowing the previous value of the attribute xt = “Was there a political 

scandal today?” during the past few days may increase our ability to predict the value of 

the attribute yt = “Does the stock market lose value today?”. Granger causality is subject 

to errors. For example, if the event “person A leaves the building” is always followed 10 

minutes later by “Everybody leaves the building” then Granger causality will consider 

person A’s leaving the building as a cause for everybody leaving the building.  

Statistics, which provides computational methods of judging causality, has become a 

popular method of causal investigation. Probabilistic causality can be defined as follows. 

A is considered to be a cause of B if we have P(B | A) = 1 and P(B | ~A) = 0, where P(B 
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|A) measures the conditional probability of B given A, i.e., the probability of event B 

happening, given that event A has already happened [89]. This formula implies temporal 

precedence of the cause with regards to the effect. In practice, however, this definition is 

too brittle, and few real-world data would satisfy it, so one says that if P(B | A) > P(B | 

~A) then A is a cause of B. An example of a weakness of this second definition comes 

into view if A = seeing lightning, and B = hearing thunder. Suppose we hear thunder only 

after seeing lightning, then we have P(B | A) > P(B | ~A), which would lead us to believe 

that the act of seeing the lightning cause the hearing of thunder. For this reason in the 

probabilistic approach there is an added assumption that there should not be any hidden 

common causes at work. In this example, the lighting and the thunder are created at the 

same time by a discharge of electricity. 

Temporal order does not necessarily exist in statistics. In our description of the 

statement P(B | A), event A was considered to have already happened, but this 

consideration does not mean that every conditional probability implies a temporal 

ordering. Bayes’ rule states P(B | A) = P(A | B) × P(B) / P(A). In the left hand side of the 

equation event B is assumed to have already happened, while in the right hand side event 

A is assumed to have happened. In other words, using algebraic manipulation we can 

change the order in which the events are supposed to have happened, and thus reverse the 

original, and possibly natural, temporal order of the events.  

When a conditional probability value expresses a reverse temporal ordering, then it is 

called the likelihood [90]. Suppose we create a model M from some data D and then 

measure the conditional probability of the data given the model P(D | M). Since the data 

existed before the model, this probability is called the likelihood of D given M, and 
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indicates reversing the temporal order because now the model explains the data, instead 

of the other way around. For more discussions about discovering causality, especially 

from a statistical point of view, refer to [18, 28, 44, 78, 85]. 

 

2.3 Causality in Computer Science 

Automatic discovery of causal relations among a number of attributes has been an 

active research field. More specifically, automated methods have been applied to 

determining whether or not the value of an attribute is caused by the values of the 

condition attributes.  

The prevalent approach to the discovery of causality is to consider the problem to be 

that of creating a graph, where the parent nodes denote causes, while the children denote 

effects. Conditional independence plays a great role in the construction of these causal 

graphs. Two tools that were designed for performing unsupervised search for causal 

relations are TETRAD [70] and CaMML [42, 82]. They look for relationships among all 

attributes, resulting in a non-linear increase in running time as the number of attributes 

increase. Although these tools were not designed for the exact problem of finding 

atemporal and temporal rules from temporally ordered data from a single source, they can 

be applied to this problem and provide the most appropriate existing techniques for 

comparison purposes with our proposed approach. 

Currently TETRAD is the de facto causality discoverer, and is widely discussed in the 

literature. CaMML, has received less attention, and fewer technical details are available 

for it.  
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TETRAD 

TETRAD is a well-known causality discoverer that uses Bayesian networks [24, 62] 

to find causal relations. Bayesian networks are directed acyclic graphs that represent the 

conditional dependency of the attributes. A Bayesian network uses conditional 

probability distributions at each node [25]. It is advocated in [84] that a Bayesian network 

is a generalisation of a relational database. A causal Bayesian network, as used in 

TETRAD, assumes that the links in the graph denote causal relationships. TETRAD at 

first assumes that all attributes are causaly related, so at the beginning the causal network 

is fully connected. Then it uses conditional independence tests to remove or revise edges. 

The remaining edges form a causal Bayesian network. It has its own notation for 

displaying the discovered causal relations. For example, A → B means that A causes B 

and A ↔ B means that both A and B have a hidden common cause. Unfortunately 

TETRAD's results are not always precise. A o→ B means that either A causes B, or they 

both have a hidden common cause, A o−o B means that A causes B or B causes A, or they 

both have a hidden common cause (usually considered to mean the same thing as co-

occurrence). This ambiguity about the exact nature of the relationship opens the door to 

different interpretations of the results. From the examples in [9, 76], it appears that 

TETRAD discovers causal relations that are subject to debate.  

The main trend in causality mining involves using the statistical concept of 

conditional independence as a measure of the control one attribute may have over another 

[63]. For example, given the three attributes x, y, and z, if y is independent from z given x, 

that is, P(y, z | x) = P(y | x),  then we can conclude that y is not a direct cause of z. In other 

words, x separates y and z from each other. This basic concept is used to build Bayesian 
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networks, which show the conditional dependence of attributes as arcs. These arcs are 

then interpreted as signifying causal relations and the resulting Bayesian network is 

considered causal. 

A joint probability is the probability of two or more events happening together, as in 

P(a, b). A marginal probability distribution is the probability of some events happening, 

while ignoring the other events. P(a), which ignores the attribute b, is a marginal 

probability value. In constructing a Bayesian network, we simplify joint probability 

distributions by using products of marginal probability distributions and conditional 

probabilities. As a simple example, P(a, b) can be written as P(b | a) × P(a). In this case 

the corresponding Bayesian network is a graph consisting of two nodes a and b, where a 

is the parent of b (node a points to node b), and there is a directed link from node a to 

node b. Bayesian networks are acyclic.  

In general, the chain rule of probability is written as P(x1, …, xn) = P(xn | xn-1,…,x1) × 

P(xn-1 | xn-1,…., x1) × … × P(x2 | x1) × P(x1), where × denotes multiplication. This formula 

can be simplified when we have information about the conditional independence of the 

attributes, which can be either given by the user, or computed from the data. For 

example, suppose we want to determine what causes the city’s fire department to send 

out a fire rescue team to a home. We represent this event with r. A user can come up with 

a number of possibilities for the causes. The main cause can be identified as the home’s 

alarm system a, which in turn may be caused by a fire f or by an accident t. But it also 

possible that the alarm system is not working, and the rescue team was sent because of a 

passer by’s phone call c. A graph showing these relations comes is shown in Figure 2.1. 
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Figure 2.1 A Bayesian network for the fire rescue team example 

Such graphs appear in Belief networks, probabilistic networks, knowledge maps, and 

causal networks [68]. This Bayesian network implies the property that any node is 

independent of its non-descendant nodes when conditioned on its parents. This 

implication is called the causal Markov condition [91]. Table 2.1 summarises the 

differences between a Bayesian network and a causal Bayesian network. As can be seen, 

the move from a Bayesian network to a causal Bayesian network mostly involves a 

change of interpretation and terminology. 

Table 2.1 Differences between a Bayesian network and a causal Bayesian network 

Bayesian network Causal Bayesian network 

An edge denotes a 

probabilistic dependence. 

An edge denotes a direct causal 

relationship. 

A node is independent of its 

non-descendants given its 

parents (Markov condition). 

A node is independent of its non-

descendants given its direct 

causes (Markov condition). 

The network is used for 

probabilistic reasoning. 

The network is used for causal 

inference. 

 

Nodes t, f, and p do not have any parents, so their probabilities can be expressed by 

the marginal probabilities P(t), P(f), and P(p). Event a, on the other hand, has two parents, 

so its probability distribution is determined only by referring to the parents t and f. Using 

the chain rule of probability we have P(f, t, a) = P(a | f, t) × P(t |f) × P(f). Now we 

f t 

a 

r 

c 
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incorporate the conditional independence P(t | f) = P(t) as expressed by the network, and 

we get: P( f, t, a) = P(a | t, f) × P(t) × P(f). 

For all attributes, according to the chain rule of probability, also known as the 

product rule or the multiplication rule [7], P(f, t, c, a, r) = P(r | f, t, c, a) × P(a, | f, t, c) × 

P(c | f, t) × P(t | f) ×  P(f). The assumption of conditional independence of each node from 

other nodes, given the parents, allows us to make these substitutions:  P(t | f) = P(t), P(c | 

f, t) = P(c), P(a | f, t, p) = P(a | f, t), and P(r | f, t, c, a) = P(r | c, a), so can simplify the 

joint probability formula: P(f, t, c, a, r) = P(r | a, c) × P(a | f, t) × P(t) × P(f) × P(c). 

Intervention is of great importance in this method of causal discovery. By fixing a 

node at a certain value, one investigates its effect on the descendent nodes. For example, 

we can manipulate the graph of Figure 2.1 by setting the alarm to be on, and hence create 

the new probability distribution: Palarm(f, t, c, a, r) = P(r | a, c) × P(c) = P(c, a, r). As can 

be seen, an intervention removes the ancestors of the manipulated node. Pearl introduces 

the do() operator for manipulation of nodes. Fixing a descendant node should have no 

effect on its parents, which makes causality an asymmetric property by Pearl’s definition 

because causality flows from parents to the children and not vice versa.  

A graph denotes the order in which causality takes effect. In Pearl’s scheme, the 

starting nodes take their values first, and then the descendants are affected. As an 

example, an equation such as f = m × a by itself does not show causality, but in a graph 

such as f → a, we know that f comes first.  

We associate a conditional probability table with each node of a Bayesian network. 

For this example we may have the following probability tables, as presented in Table 2.2. 

Accident t, Fire f, and Call c are not conditioned on any other attributes, while Alarm a 
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and Rescue r are represented by conditional probability distributions. As can be seen, the 

assumption of conditional independence reduces the size of the joint probability 

distribution from the potentially intractable 2
n
, where n is the number of binary attributes. 

At the other extreme, where all attributes are independent, we would need a table of only 

size 2n to store the probabilities.  

Table 2.2 The (conditional) probability tables for the nodes of a Bayesian graph 
Accident Fire Alarm Rescue Team 

True False True False Accident Fire True False Alarm Call True False 

0.2 0.8 0.01 0.99 false false 0.01 0.99 false false 0.01 0.99 

Call  false true 0.9 0.1 false true 0.9 0.1 

True False  true false 0.9 0.1 true false 0.9 0.1 

0.01 0.99  true true 0.99 0.01 true true 0.95 0.05 

 

Each row in a conditional probability table should sum to one. A node with no parents 

has a table with a single row, which contains the prior probabilities of its values. By 

definition, the prior probability of an event does not depend on other events. Conditional 

probability tables can be either provided by a domain expert or computed from data.  

Here is a general procedure for constructing a Bayesian network [68]: 

Procedure P2.1: 

1. Choose a relevant set of attributes X. 

2. Choose an ordering for the attributes. 

3. While there are attributes left in X, 

a. Pick an attribute xi and add a corresponding node to the network 

b. Set Parents(xi) ⊆ {xi-1, …, x1} to some minimal set of nodes already in the 

net such that the conditional independence property P(xi | xi-1,…,x1) = P(xi | 

Parents(xi)) is satisfied.  

c. Define the conditional probability table for xi. 
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This procedure is simple and guarantees an acyclic graph, but the results depend on the 

order in which the nodes are added. 

Bayesian networks can be used to consider different possibilities. For example, 

suppose that the rescue team is present. What is the probability that the cause was an 

alarm and not a call? A posterior probability is simply a conditional probability, such as 

P(A |B), where A has happened after (posterior to) B. We can use Bayes’ rule to discover 

the posterior probabilities, as follows: P(a = true | r = true) = P(a =true ∧ r = true) / P(r = 

true). A similar formula calculates P(c = true | r = true). Even though a and c are 

considered independent, they become dependent when conditioned on the observation of 

their effect r. For example, P(c = true | r = true ∧ a = true) is different from that of P(c = 

true | r = true). 

In a causal Bayesian network, the parents of a node are interpreted to be its causes, 

and the children of a node are considered the effects. To help distinguish between a mere 

association and causality, a causal Bayesian network measures the relationship of three 

attributes. One attribute acts as the control for the two other attributes. Suppose that we 

have three attributes x, y, and z. If the control attribute x separates the other attributes y 

and z, then y and z are independent given x. In this case x is either the parent of y and z, or 

x comes in between y and z, as in Figure 2.2. In all three cases y and z are not reachable 

given x. If both z and y are parents of x, then these two causes are not independent, as 

mentioned in the fire rescue team example. TETRAD generates a list of all the individual 

links of a causal graph, from which the user can derive the graph. 
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                (a)                               (b)                               (c) 

Figure 2.2 y and z are conditionally independent given x 

The fourth possibility, that of nodes y and z pointing to node x (y and z are both 

causes of x), would create a collider at node x. Each of the three possibilities in Figure 2.2 

has a corresponding factorisation of the probability joint distribution according to the 

Markov condition. For 2.2(a) we have p(x, y, z) = p(x) × p(y | x) × p(z | x). For 2.2(b), p(x, 

y, z) = p(z) × p(x | z) × p(y | x), while for 2.2(c) we have p(x, y, z) = p(y) × p(x | y) × p(z | 

x). The graph with the joint distribution that better matches the data is then selected to 

represent the data. TETRAD can leave the edge connecting two nodes as undirected 

when the data does not allow for a direction to be set. Alternatively, it may flag an edge 

as contradictory when there is some evidence supporting one direction, and some 

supporting the other direction. 

Given a causal graph, the d-connectedness  (dependence- or directional-

connectedness) criterion can be used to determine if two nodes are independent from 

each other given a third node [63]. In this method independence and separation in the 

graph are considered to imply each other. In Figure 2.2, y and z are d-separated given x. 

One can generalise the d-separation (and d-connectedness) to sets of attributes by 

defining the sets of nodes x and y to be d-separated (d-connected) given z, if every 

member of x and y are d-separated (d-connected) given z. 

x 

z y 

x 

z y 

x 

z y 
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The notion of conditional independence as defined in statistics is devoid of time. 

Pearl recommends that temporal information, if available, be used to place constraints on 

the relationships among the attributes (if we know x always happens before y, then y 

cannot be a cause of x) [63]. However, temporal order is not essential to the working of 

such algorithms.  

TETRAD is proven to give correct results if the input data satisfies the Markov 

condition, as well as the faithfulness condition. A dataset generated from a set of causally 

sufficient attributes satisfies the faithfulness condition if the probability distribution 

entailed by it matches that of the graph that generated the data [92].  

There has been work on introducing more temporal information in constructing 

Bayesian networks, as described by Shafer in [74], where the concept of a causally 

subsequent Bayesian network is explained (The variable x is subsequent to variable y 

when y precedes it x). Shafer argues that a probability tree, such as the one depicted in 

Figure 2.3 is more general than a Bayesian network. More details on Shafer’s work come 

in [75]. 

Causal Bayesian networks are sensitive to the correctness of the input data. In other 

words, a causal Bayesian network is as reliable as the prior data that was used to generate 

it. Also, when presented with data that violate the original probabilities used to construct 

the network, the inferences may be wrong. However, the main practical problem with 

Bayesian networks is that constructing a network from observed data is an NP-Hard task 

[13], and becomes increasingly time-consuming, or impossible, as the number and 

combination of attributes increase. 
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Here is a simple example of how to generate a causal Bayesian network with only 

two variables. The first event e1 is the probability of rain today, and the second event e2 is 

the probability of rain tomorrow. We expect from experience that these two events be 

related to each other, meaning that if it rains today, it is more probable to rain tomorrow. 

Suppose we observe some weather data and construct the joint and marginal probability 

table shown in Table 2.3. 

Table 2.3 The joint and marginal probabilities for the rain events 

 Rain tomorrow 

(e2) 

No rain tomorrow 

(!e2) 

Marginal probability 

of raining today 

Rain today (e1) 0.15 0.10 0.25 

No rain today (!e1) 0.15 0.60 0.75 

Marginal probability 

of raining tomorrow 

0.30 0.7  

 

To generate a network representing the probabilities, we start with a node that denotes 

event e1, and create its two child nodes, denoted as e1 and !e1. Then for each child node 

we create further children to denote e2 and !e2, as shown in the Figure 2.3. 

  

 

 

 

 

 

Figure 2.3 A probability tree representing two attributes 

To create a causal Bayesian network in TETRAD we start from a fully connected 

graph, where every node is dependent on every other node. We then prune the nodes as 

we establish conditional independence among the nodes. After this phase TETARD 

P(!e1) = 0.75 

P(e1) = 0.25 

P(e2 |e1) = 0.6 

P(!e2 |e1) = 0.4 

P(e2 |!e1) = 0.2 

P(!e2 |!e1) = 0.8 

P(e1, e2) = 0.15 

P(e1, !e2) = 0.10 

P(!e1, e2) = 0.15 

P(!e1, !e2) = 0.60 
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chooses a direction for each remaining link based on conditional dependence values 

obtained from both possibilities.  

Here is how TETRAD handles the simple rain example. TETRAD starts with a graph 

containing both events connected by a link. If e1 and e2 are independent, it removes the 

link between them. It computes P(e1, e2) = 0.15, while P(e1) × P(e2) = 0.25 × 0.3 = 0.075, 

and so P(e1, e2) ≠ P(e1) × P(e2), which by definition indicates that the events are not 

independent. S we leave the link in place. Both possibilities for the direction of the link 

are shown in Figure 2.4.  

 

 

Figure 2.4 Two possible causal Bayesian networks for the rain example 

 

 Now the programme has to decide on a direction. We compute the conditional 

dependencies in both cases: P(e1 | e2) = P(e1, e2) / P(e2) = 0.15 / 0.30 = 0.5, and in a 

similar fashion,  P(e2 |e1) = 0.6. In this case it seems more plausible that e1 should be the 

parent of e2 than the other way around.  

We needed to compute both possibilities in the case of a simple example with two 

attributes. In general, finding the best network is of exponential nature, and heuristics 

have to be devised to create trees in practical time limits. Procedure P2.1 is an example of 

such heuristic methods, but as we have already mentioned, it is sensitive to the order in 

which the variables are added. 

e1 e2 e2 e1 
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CaMML 

CaMML (Causal Minimum Message Length) is a Minimum Message Length based 

causal discovery system that creates a causal Bayesian network. It measures the 

goodness-of-fit of a causal model to the data [82].  Given a set of observed attributes, 

CaMML finds causal relationships between one or more causes and a single effect. As an 

example, in CaMML's notation (A, B → C) means that A and B are causes of C.  

CaMML tries to learn the best causal Bayesian structure to explain some observed 

data, using a Minimum Message Length (MML) metric for selecting a model. It searches 

the space of possible causal models using the Markov Chain Monte Carlo Method 

(MCMC) [55], and finds the one that best explains the data. In a Markov process, the 

transition from one state to the next depends on the current state only. In other words, any 

transition in a Markov process does not depends on the history of the moves that lead to 

the current state. A Markov chain is characterized by a transition matrix than gives the 

probability of moving from one state of the system to the next one. Starting from an 

initial state and multiplying by the Markov transition matrix enough number of times, we 

settle in a final state. Monte Carlo methods work by simulating an unknown function 

using probabilistic means. They sample values from a probability distribution and 

compute a function at those points.  In MCMC, to obtain a specific probability 

distribution, one generates a Markov chain whose long-term equilibrium is that 

distribution.  

MML was first introduced by Wallace and Boulton [81] and is based on maximizing 

the posterior probability of the model. If we want a good model M which is fitted to the 
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data D, then we want to maximize the posterior probability P(M | D). According to 

Bayes’ rule we should maximize P(D | M) × P(M) / P(D). We recall that P(D | M)  is the 

likelihood of D given M. Since D is given, we consider P(D) a constant, so the model M 

must be chosen such that the numerator is maximized. We follow the information 

theory’s [77] method of taking the negative of the natural logarithm of the probability 

values, and convert the problem to that of minimizing the expression –ln(P(D | M)) –

ln(P(M)). In information theory, this formula expresses the minimum length necessary to 

encode the model M, which is –ln(P(M)), plus the minimum length necessary for 

encoding any exceptions to the rules in the data, expressed by –ln(P(D | M)). Hence the 

name MML. 

We now consider the simple rain example. The calculations performed may not be the 

same as those performed by CaMML, but the general outline is similar. For the rain 

example, we first must define rules that state the rainy days to be independent (resulting 

in two simple rules: e1, e2), or either event can cause the other one, expressed as either e1 

→ e2 or e2 → e1. We now attempt to select one rule set from the space of rule sets {<e1, 

e2>, <e1 → e2>, <e2 → e1>}. Since the size of the models are close, we ignore the model 

M in the equation and minimize –ln(P(D | M)).  

In the first case, we have two rules, and consider their average probability value as 

the probability of the rule set. We calculate: P(D | e1, e2) = (P(e1) + P(e2 )) / 2 = (0.25 + 

0.3) / 2 = 0.225. From which we compute –ln(0.225) =1.49. Now we examine another 

rule set and compute P(D | e1 → e2). To do so we add the correct predictions (P(e2 | e1) + 

P(!e2 | ! e1)) and subtract the probabilities of wrong predictions (P(e2 | ! e1) + P(!e2 | e1)). 

Note that this may result in values bigger than 1, but the formula will still work. In the 
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rain example we have:  P(e2 | e1) + P(!e2 | ! e1) - P(e2 | ! e1) + P(!e2 | e1) = 0.6 + 0.8 – 0.4 – 

0.2 = 0.8. We obtain –ln(0.8) = 0.22.  For P(D | e2 → e1), we compute P(e1 | e2) + P(!e1 | ! 

e2) – P(e1 | ! e2) – P(!e2 | e1) = 0.5 + 0.86 – 0.5 – 0.14 =  0.72. We obtain –ln(0.72) = 0.32. 

So MML also suggests that we should choose e1 → e2. 

The main difference between TETRAD and CaMML is that TETRAD aims to first 

discover the probabilistic dependency structure of the variables, and then infer a causal 

model to explain the dependencies. CaMML, on the other hand, considers a model first, 

and then sees how well the data can be fitted to it, as explained before.  

There are some common characteristics for Bayesian learners such as CaMML and 

TETRAD. One is that they consider all the available attributes in the process of causal 

discovery. In other words, they try to find causal relationships among all the attributes, 

making the problem exponentially harder as the number of attributes grows. We have 

shown that this can result in very long execution times [38]. The other common 

consideration is that the input records are considered to be independent of each other, and 

no assumptions are made as to when or where they may have been obtained. The records 

could have come from different sources or different times. Assuming no temporal 

relationship among the records allows these approaches to work on many datasets. 

 



42

 

 

 

Chapter 3  

 

Knowledge Discovery from Sequential Data 

 

In this chapter, we present our approach to the discovery of sequential rules, and 

show how we can use tools that were not designed to handle temporal data to process and 

generate temporal rules. 

Section 3.1 presents the formal definition of causality and acasuality, and defines the 

problem we are solving. We also introduce the form of input data appropriate for 

investigation with TIMERS. This section explains how the data is pre-processed in 

different forms, how rules are generated and their quality measured. Sections 3.2 and 3.3 

present the temporalisation and the TIMERS algorithms along with other sub-algorithms 

employed by them. In Section 3.4 we show how the problem of discovering rules 

reference attribute values in different time steps is related to that of traversing an 

automaton’s graph of state transitions in forward or backward directions of time. We 

show that TIMERS can determine to what extend an automaton is reversible.  
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3.1 The Representation of the Problem 

In this section we present the main ideas behind the TIMERS method, including a formal 

definition of what is meant by causal, acausal, and instantaneous relations. 

 

3.1.1 Overview 

Imagine a person is faced with the problem of learning the effects of his or her actions 

on a black box system. Given an unknown system with a set of knobs (inputs) and gauges 

(outputs), the person starts by observing the position of the knobs and the gauges. The 

knobs and gauges may be connected together, via feedback loops, which blurs a strict 

input-output notion. These observations would allow the person to deduce the 

relationships between the different input and output states. After a while, if possible he 

may start manipulating the knobs and reading the output, to see if it is possible to set the 

outputs to desired values. 

As a more specific example, suppose a person can control the temperature of a 

cylinder, and can measure the temperature T, pressure P, and volume V of the cylinder. 

From the formula P = nRT / V, we know that at any instant, the three measurements are 

related to each other. However, there will be a time interval between turning the knob to 

increase the temperature, and the observation of the new values for pressure and volume. 

This dependence is captured in any sequential data that is made of the observables of the 

system, and one can say that turning the temperature knob causes the volume or pressure 

to change. 
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The above scenario makes explicit the importance of the temporal order among 

observations. As a side effect, we cannot mix data coming from different systems 

together, as that would invalidate any strict temporal order among the observations. In 

our method, any conclusion about the attributes’ temporal effects on each other is derived 

directly from the data. 

The problem we are considering is to classify the relation between a distinguished 

decision attribute and a number of condition attributes as one of instantaneous, causal, or 

acausal based on temporal data. To solve this problem we propose the TIMERS 

algorithm. TIMERS assumes the passage of time between the input records, and differs 

from the other methods in two main ways: First, it does not try to create a graph of causal 

relations, where all attributes take part in a hierarchy of causal relationships. Instead it 

focuses on the relationship between a decision attribute and the other attributes, to see if 

there is a causal relation among them. It is possible to run TIMERS several times with a 

different target (decision) attribute each time, but the results are not to be combined into a 

graph (though as will be seen, we can combine the results into "dependence diagrams"). 

Second, it assumes that the input records are temporally sorted and come from the same 

source. This temporal characteristic of the data is the basis for the justification of causal 

discovery in the presented method.  

While TIMERS is fast and can handle many more attributes in the record than other 

methods [38], proper input is less widely available. However, when applicable, the results 

are meaningful, because with temporal decision rules the user can answer questions about 

"what" is related to what, as well as "how." For example, an attribute may appear in all 

causal rules that determine the value of a decision attribute, implying a stronger 
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relationship than another attribute that appears sporadically. This idea is the basis for 

dependence diagrams, as explained in Section 4.2.  

Temporal sequences are often considered to be passive indicators for the presence of 

temporal structure in data [1, 21, 53, 61], but when causal relations exist in the domain, a 

temporal rule can be interpreted as a plan and executed. TIMERS’ implementation 

optionally converts the output rules to PROLOG statements, which can then be executed 

directly [34, 35]. 

 

3.1.2 Problem Statement 

We now state the problem formally. Sequential data are formed by a series of records 

that appear one after the other, and follow a definite order. In the case of observations 

made from a single system, the order may be temporal, in which case the records appear 

according to the time they were generated. We assume that a total of T observed records 

are present in the input data D = {d1, …, dT}. In other words, we gather data during T 

time steps. While we are using a set notation, we consider the order of the records in D to 

be unchangeable.  

Since we are interested in the attribute values over time, we distinguish the time of 

observation of each attribute value in D by the first index. In practice this time stamping 

may be explicit or implicit. We do not rely on explicit time stamping, and consider the 

order in which the records appear to represent their time. For any t, 1 ≤ t ≤ T we 

distinguish between the current time step t and the other time steps. The value of the 

attributes at the current time step may depend on the attribute values that appear before or 

after the current time step. We assume that a time step takes long enough for any changes 
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in the system to have become manifest. The time steps do not have to be of equal length. 

If we consider the system to be an automaton, and each record to represent a state, then 

each record is generated after a state transition, which may take different amounts of time 

depending on the source and destination states. 

Each record dt = <dt1,…, dtm> represents the values of m different attributes, taken 

from the set of attributes V = {v1,…, vm}, which are observed at the same time step t. We 

consider one attribute vj, 1 ≤ j ≤ m to be of special interest, and designate it as the 

decision attribute. In many contexts, the decision attribute is selected by the domain 

expert. Given the above data, the problem is to determine if the value of attribute vj is 

causally related to the other attributes or not.   

 

3.1.3 Temporalisation 

We define the set  

P = {dki | 1 ≤ k ≤ T, 1 ≤ i ≤ m}  

to represent all observations made from time 1 to time T. For practical reasons, we 

concentrate on a limited window size of w observations. For any given time step t, the 

window includes observations in 1 time step, called the current time step, plus w−1 

neighbouring time steps. The neighbouring time steps can appear before or after the 

current time step. We assume that only the information in this window is relevant to 

predicting the value of decision attribute vj. The window set  

Pw(t) = {dki | t ≤ T − w + 1 & t ≤ k < t + w, 1 ≤ i ≤ m}  

represents all observations in the window, starting at time step t and ending at t + w − 1. 

Pw(t) merges a number of input records together.  
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When considering a window size of w, there are w possibilities for the position of the 

decision attribute in Pw(t), ranging from position t to t + w − 1. We aim to reset the 

positions in the merged records, so the time-indices start from 1. This resetting is done by 

simply subtracting the value (t−1) from each field’s time step. The process of merging a 

number of consecutive records together, which is called temporalisation, converts every 

w consecutive observation in the original data to w temporalised records, such that  

for 1 ≤ r < w, zr = {zki | p ≠ r, dpi ∈ Pw(t) & k = p − t + 1 & zki = dpi} ∪ {drj}.  

j denotes the decision attribute’s index. zr is derived from Pw(t) with the following 

modifications. First, the time steps are set to start at 1, no matter where in the input data 

D the fields come from. Second, we do not include the values for the decision attribute 

except in time step r. For every window set Pw(t), temporalisation produces w 

temporalised records, one for each possible position of the decision attribute: 1 ≤ r ≤ w. 

Each temporalised record contains m × (w − 1) + 1 fields. The “1” indicates the decision 

attribute’s value. The other m−1 values of the record in which the decision attribute 

appears are not included in the temporalised record. Since we generate w records for 

every record t, 1 ≤ t ≤ T−w, the total number of records is w × (T − w + 1). 

The above method is called the sliding position temporalisation because the position 

of the decision attribute slides from the beginning of the merged record to the end of the 

window.  

 

3.1.4 Causality and Acausality in TIMERS 

In the following formal definitions of instantaneous, causal, and acasual sets of rules, 

R = {r1,… ,rn} is a set of rules generated to predict the value of a decision attribute.  All 
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the rules have the same decision attribute, as returned by the DECISION() operator. 

Hence, DECISION(r1) = DECISION(rn) = dat0. da is the name of the decision attribute 

from the set of attributes V, and t0 is the time it was observed, where 1  ≤ t0 ≤ w. Since 

the appearance of an attribute vi at different times usually denotes different values, the 

temporal relation will have a bigger domain: Vt = {vji | 1 ≤ j ≤ w & 1 ≤ i ≤ m},  

where w, the window size, indicates how many time steps are involved. All the condition 

attributes that are used in a rule are contained in the set: CONDITIONS(r) = {at, …} ⊆ Vt 

− { dat0}.  

All attributes in CONDITIONS() have a time step as index, to distinguish the same 

attribute observed at different times. We assume that DECISION(r) ∉ CONDITIONS(r). 

In other words, an attribute at a given time cannot be used to predict its own value at that 

time. Here we are concerned with the properties of sets of rules, not attributes, and 

assume the rule sets not to be empty, that is, we assume that for any rule set R, ∃ r ∈ R, 

such that CONDITIONS(r) ≠ ∅. If this condition is not met, then we have a prediction 

for the decision attribute that does not depend on any condition attributes. We cannot 

discuss the temporal characteristics of this single rule with no left hand side, so we will 

not consider it any further. 

Instantaneous. An instantaneous set of rules is one in which the current value of the 

decision attribute in every rule is determined only by the values of the condition attributes 

observed in the same record as the decision attribute. An instantaneous set of rules is an 

atemporal one. Another name for an instantaneous set of rules is a (atemporal) co-

occurrence, where the values of the decision attribute are associated with the values of 

the condition attributes. 



49

Definition 3.1: Instantaneous. For any rule r in rule set R, if the decision attribute d 

appears at time t0, then all condition attributes should also appear at time t0, i.e., 

R is instantaneous iff  (∀r ∈ R, if dat0 = DECISION(r), then ∀at ∈ CONDITIONS(r), t = 

t0 ). 

Temporal. A temporal set of rules is one that involves attributes from different time 

steps. A temporal set of rules can be causal or acausal. We exclude any condition 

attribute that appears at the same time as the decision attribute so as to prevent a strong 

instantaneous relationship from showing itself in the temporal tests' results. 

Definition 3.2: Temporal. For any rule r in the rule set R, if the decision attribute 

appears at time t0, then all condition attributes should appear at time t ≠ t0, i.e., 

R is temporal iff (∀r ∈ R, if dat0 = DECISION(r), then ∀at ∈ CONDITIONS(r), t ≠ t0). 

We now define the two possible types of a temporal rule: 

Causal. In a causal set of rules, the current value of the decision attribute relies only on 

the previous values of the condition attributes in each rule [72]. 

Definition 3.3: Causal. For any rule r in the rule set R, if the decision attribute appears at 

time t0, then all condition attributes should appear at time t < t0, i.e., 

R is causal iff  (∀r ∈ R, if dat0 = DECISION(r), then ∀at ∈ CONDITIONS(r), t < t0 ). 

Acausal. In an acausal set of rules, the current value of the decision attribute relies on the 

future value of at least one condition attribute [46]. 

Definition 3.4: Acausal. For any rule r in the rule set R, if the decision attribute appears 

at time t0, then no attribute appears at time t0, and for at least one rule, at least one 

condition attribute should appear at time t > t0. i.e.,  
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R is acausal iff  (1) ∀r ∈ R, if dat0 = DECISION(r), then ∀at ∈ CONDITION(r), t ≠ t0. 

(2) ∃r ∈ R, if dat0 = DECISION(r), then ∃at ∈ CONDITIONS(r), t > t0. 

A pictorial representation of the instantaneous, causal, and acausal relations is 

provided in Figure 3.1. Condition attributes are represented by rectangles the decision 

attribute is shown by an oval. 

 

In an instantaneous relationship, the decision attribute and the condition attributes are 

observed at the same time. 

 

 

 

 

 

 

(a) Instantaneous relationship 

 

 

In a causal relationship, the condition attributes occur before the decision attribute. 

 

 

 

 

(b) Causal relationship 

 

 

In an acausal relationship, at least one of the condition attributes occurs in the future. 

 

 

 

 

 

 

 

 

(c) Acausal relationship 

Figure 3.1 Temporal relationships between the attributes 
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We also put emphasis of temporal precedence between the causes and the effect, and 

use the ability to predict the value of the decision attribute to measure causality, which is 

similar to the case of Granger causality. However, Granger causality does not consider 

using future observations.  

In a temporal context we look for rule sets that represent a relation R: S → {vt0j}. S ⊆ 

Vt – {vt0j}, where vt0j denotes the decision attribute at time t0. We consider S to be 

minimal, if there is no S' such that S' ⊂ S and R: S' → {vTj}. In other words, S represents 

the smallest set of attributes that can represent the relationship. If we cannot prove that 

set S is minimal, then a discovered temporal relation may actually be equivalent to an 

atemporal relation that results by eliminating “unnecessary” attributes. With this notation, 

in an atemporal relationship we have R: S → {vj}, S ⊆ V − {vj}. In a temporal relationship 

we have: R: S → {vTj}, S ⊆ Vt − {vt0j} & S ∩ (Vt − {vt01,…, vt0m})  ≠ ∅.  

The last condition makes sure that some attributes from time steps other than t0 are used. 

TIMERS performs three tests: One for the instantaneous case, one for the causal case, 

and one for the acausal case. In each case we provide the rule discoverer with the 

appropriate condition attributes. In the instantaneous case, only attributes from the 

current time step are provided for rule generation. In the causal case, only attributes from 

the preceding time steps are provided, and in the acausal case, attributes from the 

preceding, as well as at least some attributes from succeeding time steps are involved in 

rule generation. The resulting rulesets are then evaluated, and the one with highest quality 

is considered to be the best description for the relationship. In this thesis we allow the 

user to choose either the training or the predictive accuracy values of the rules as the 

quality measure. It is possible to include other measures, such as the number of rules 
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needed for the rules (probably with lower number of rules being more desirable), in 

addition to or in place of accuracy. We leave the choice of quality measure to specific 

implementations. 

When discovering acausality, the earlier versions of the TIMERS algorithm used the 

condition attributes only from the succeeding time steps [37], while in the current version 

TIMERS’ rules can refer to attribute values in both previous and next records. This 

flexibility increases the likelihood of discovering better acausal rules, not only because 

more cases are investigated, but also because of the common sense notion that events 

happen gradually, and the neighbouring values in both directions are usually related to 

the value of the decision attribute.  

We define an order of conceptual simplicity among the three types of the relations, 

with instantaneous being the simplest type of relationship, followed by acausality, 

followed by causality. Hence, instantaneous <simplicity acausal <simplicity causal. The 

intuition behind this ordering is that as we move from instantaneous to acausal and then 

to causal, more claims are being made about the relationship. As a principle we try to 

explain a relationship with the simplest possible type. As we will see, this ordering is 

used to choose a winning relations type when the results of the three tests are close. 

 

3.1.5 Spatial Sequential Data 

So far we have focused on discovering rules that involve time, i.e. the condition 

attributes appear at different times than the decision attribute. In this section, we take a 

step beyond time and generalise our method to include one-dimensional rules. 
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Modern physics has established time and space as a unity, where one is inconceivable 

without the other. However, time remains an anomaly because unlike the spatial 

dimensions, it seems that one cannot move back in time, although experiments have 

shown that at the particle level, this is in fact possible [23]. Discovering temporal 

associations that predict the future, based on past observations, is possible, and one can 

conceptually use the same idea for one-dimensional space as well. Our work has used the 

distinction between moving back and forth in time as the basis of distinguishing causality 

on one side, and acausality (or temporal co-occurrence) on the other side. We can explore 

the same idea in a one-dimensional space. 

Consider the problem of drilling an oil well. The well can be regarded as a one-

dimensional (linear) entity. As the drill is making its way through the ground, new points 

are explored and registered. When we stop, we have a series of records that follow each 

other along a line. While the data may seem to have been produced in a certain temporal 

order, one could argue that if the drilling were started from the opposite side, then we 

would be encountering the points in the reverse direction of time. It makes perfect sense 

to analyse the drilling data in either direction, with the results being valid in both cases. 

The linear order does not appear to offer any idea relevant to cause and effect, because 

what happens to precede something in one direction will be following it in the opposite 

direction. Thus, for spatial data, we refrain from labelling the type of relationship as 

causal or otherwise, and concern ourselves with finding the best possible rules for 

predicting the decision attribute's value. We still perform three tests, but the ruleset 

selected by the tests is considered simply as the best ruleset for predicting the decision 
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attribute. No judgement is suggested concerning the nature of the relationships between 

the attributes. 

 

3.2 The Temporalisation Algorithm 

Traditionally, to determine the value of a decision attribute we use the condition 

attributes from the same record. Here we provide a simple example to explain the reasons 

for temporalisation. Consider the following sequence of  <position, direction> records: 

<3, Left>, <2, Left>, <1, Right>, <2, Right>, etc. Each record indicates the current 

position along a line, and the direction of movement at that position, assumed to be 

determined randomly. Every movement changes the position by one unit to the left or 

right. If the order of the records was ignored, the data would be atemporal. In such a case, 

we could form atemporal rules, for example by using the current movement direction (the 

condition attribute) to determine the current position (the decision attribute). The results 

would be instantaneous rules, but we can tell intuitively that they probably would not 

have good accuracy values, because there is no inherent relationship between a position 

and the randomly-chosen direction of movement at that position.  

To explore causality, we use the intuitive notion that the condition attributes' effects 

take time to appear, and thus are seen in the later records. In this example, the next 

position depends on the previous position, plus the previous direction of movement. 

Given a temporally sorted sequence of records, we merge subsequent records into one 

record, bringing the possible causes and the effect together by temporalisation. The 

window size in temporalisation expresses our belief about how long it takes for effects to 

manifest themselves. Temporalisation enables us to use standard rule learning tools and 
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programmes, which do not consider the passage of time, for the purpose of temporal 

analysis of data. 

An example record sequence with a window size of two in the forward direction of 

time would be <3, Left, 2, Left>, <2, Left, 1, Right>, <1, Right, 2, Right>, etc., where 

each record includes data from two time steps. Here we have the previous position, and 

the movement direction, as well as the current values. Obviously, given the previous 

position and the previous direction of movement, it is easy to determine the current 

position.  

After pairs of consecutive records have been merged, each temporalised record may 

contain a cause and its effect. If the rules derived from these temporalised records result 

in a better accuracy value than rules derived from the original records, then we declare 

the relationship between the current position and other attributes as causal. In this 

example, we can expect very good results because, assuming a deterministic world where 

actions do not fail, when we know the past position and the past movement direction, we 

can identify the next position with certainty.   

However, we may be dealing with a temporal relation that is not causal. For this 

reason, we should also consider the possibility that the next position and the next 

direction of movement allow reliable prediction of the current position. A temporalised 

record would now look like: <2, Left, 3, Left>.  Of course, in this particular example, this 

acausal hypothesis is not as good as the causal one, as knowing where we are in the 

future is not sufficient to predict where we are now. There are two possibilities: currently 

we can be to the left or the right of the future position. This example shows clear signs of 

causality. As previously mentioned, at the current time we leave out all attributes with the 
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exception of the decision attribute. In the causal temporalisation, for example, the first 

record would thus be <3, Left, 2>. This is to prevent a strong instantaneous relationship 

from skewing the results of the causal and acausal tests. 

The temporalisation technique prepares the data for rule extraction, and the final 

judgment about the type of the relationship is based on the quality of the rules. The 

quality can be measured using the rules' accuracy value. For the instantaneous test, no 

temporalisation is performed. Alternatively, one could say we temporalise with a window 

size of 1. For the causal (forward) test with a window size w, temporalisation involves 

merging every w consecutive records together, and setting the decision attribute to be that 

of the last record. For the acausality (backward) test, we attempt to predict values in the 

current record from values in the following records. So to use the same method as for the 

causal test, w consecutive records are merged and the decision attribute is set to be that of 

the first record (the current time). 

With any fixed window size w, the sliding position temporalisation algorithm first 

places the current decision attribute at position one, and uses the next w −1 records to 

predict its value. This corresponds to backward temporalisation in the previous versions 

of TIMERS [37].  Then the current attribute is set at position 2, and the previous record 

(position one) and the next w −2 records are used for prediction. This case has no 

correspondence in the previous versions, as presented in [37]. This movement of the 

decision attribute's position continues until finally it is set to w, and the previous w −1 

records are used for prediction. This corresponds to forward temporalisation in the 

previous versions. 
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As an example, consider four temporally consecutive records, each with four fields: 

R1: <1, 2, 4, true>, R2: <2, 3, 5, true>, R3: <6, 7, 8, false>, R4: <5, 2, 3, true>. Suppose we 

are interested in predicting the value of the last (Boolean) attribute. Using a window size 

of 3, we can merge them as in Table 3.1. The decision attribute is indicated in boldface. 

When it comes to the record involving the decision attribute, we do not consider any 

condition attributes in the same record as the decision [37]. The Record.value notation 

means that we are only including the decision attribute. For example, <R1, R2, R3.false> 

would contain <1, 2, 4, true, 2, 3, 5, true, false>, where false is the decision attribute in 

R3. This omission makes sure that minimum amount of data is shared between the 

original (instantaneous) record and the temporalised record.  In Table 3.1, there is a 

temporal order between the records in the first column, but there are no such relationships 

in other columns. The temporal order has been moved inside the temporalised records. 

The temporalised records can thus be used by conventional data mining tools that ignore 

any temporal order between the input records. 

Table 3.1 Temporalisation with the forward, backward, and sliding position methods 

Instantaneous. w = 1  

(original data) 

Forward (Causality).  

w = 3 

Backward (Acausality).  

w = 3 

Sliding position.  

w = 3 

R1 = <1, 2, 4, true> <R1, R2, R3.false> <R3, R2, R1.true> <R2, R3, R1.true> 

R2 = <2, 3, 5, true> <R2, R3, R4.true> <R4, R3, R2.true> <R1, R3, R2.true> 

R3 = <6, 7, 8, false>   <R1, R2, R3.false> 

R4 = <5, 2, 3, true>   <R3,  R4, R2.true> 

   <R2, R4, R3.false> 

   <R2, R3, R4.true> 

 

For the acausal test, we can have a mixture of previous and next attribute values. 

Given a window size w, p previous records and f future records can be involved, with the 

decision attribute happening in between.  So we have p + 1 + f = w. The "1" in this 

equation indicates the location of the decision attribute at the current time. The 

requirement is that f be at least 1 (at least one record from the future for the acausality test 
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to be valid), so we have 1 ≤ f ≤ w−1, and 0 ≤ p ≤ w−2. The decision attribute's position 

slides in the merged records. It moves from being in the first position (no previous 

records) to being in record number w−1 (w−2 previous records, 1 next record). The 

sliding position temporalisation operator is presented in Figure 3.2. 

The temporalisation operator Temporalise(w, pos, D, d) takes as input a window size 

w, the position of the decision attribute within the window pos, the set of input records D, 

and the decision attribute d, and outputs temporalised records. Di returns the ith record in 

the input D. Field() returns a single field in a record, as specified by its first attribute. The 

+= operator stands for concatenating the left hand side with the right hand side, with the 

results going to the left hand side attribute. <> denotes an empty record.  

for (i  =  0;  i ≤  |D| − w; i++) { 
          temporalisedRecord = <>           

          for(j  =  1; j <  pos, j++)                  // previous records 

                temporalisedRecord += Di+j 

          for(j = pos + 1; j ≤ w, j++)              // next records 
                 temporalisedRecord += DI+j 

          temporalisedRecord += Field(d, DI+pos)      // the decision attribute  

          output(temporalisedRecord) 

} 

Figure 3.2 The sliding position temporalisation method 

This algorithm covers all three temporalisation methods: (1) For the instantaneous 

test, we provide it with a window size of 1 and a position of 1. Alternatively we could 

refrain from using the algorithm and simply employ the original input data. (2) For the 

causality test, window size w would be any desired value bigger than 1, and the position 

would be w too (last record). (3) For the acausality test, the window size could be set to 

any value bigger than 1, and the position would change between 1 and w−1. 

Temporalisation results in a set of records with no temporal relationship among them. 

There is, however, an implicit temporal relationship within the fields in each 
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temporalised record. A traditional tree or rule generator considers all the attributes to be 

available at the same time, and the Temporalise() function allows such rule generators to 

still work, though the output of a traditional tree or rule generator does not consider the 

attributes to have been observed at different times.  

We can remedy this shortcoming at either the rule or tree generation level. At the rule 

generation level the attributes in the output rules can be rearranged according to their 

time of appearance. We would thus re-temporalise the output rules. Another approach is 

to create a temporal decision tree instead of rules. Normal decision tree builders such a 

C4.5 rank the condition attributes according to how suitable they will be for expanding 

the tree at each step. For a temporal decision tree, the attributes should be ranked 

according to their temporal order as well as their suitability for expanding the tree. This is 

a stricter requirement than in the case of the rules, because unlike the rules, one cannot 

reorder the branches in a tree without altering the tree. To sort the condition attributes, 

they are partitioned according to their time of encounter. So attributes that are 

encountered at time step t of the temporalised records go into set Vt. If at a node of the 

tree a condition attribute from the set Vt is used, then the children of that node can only 

use condition attributes from the sets Vj (j ≥ t), even if doing so makes the tree sub-

optimal. An example temporal decision tree is shown in the right part of Figure 3.3. 
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   (a) A normal decision tree                                         (b) A temporal decision tree 

 

Figure 3.3 Normal and temporal decision trees 

 

To see the effects of the window size on trees generated by C4.5, we interpret the data 

in a Letter Recognition database [8] as being temporal. The data consists of 20,000 

records to classify the letters of the English alphabet. There are 16 condition attributes 

that are actually seen all at the same time. However, we could look at the data as if 

different parts were generated at consecutive time steps. The results are shown in Table 

3.2, where a window size of 1 results in normal tree generation behaviour because all 

attributes are assumed to have been produced at the same time.  

Table 3.2 The effects of the window size on the size and accuracy of the tree 

Before Pruning After Pruning Window Size 

Size Error Size Error 

1 26721 0% 25713 0.5% 

3 6689 32.9% 6385 33.1% 

6 6081 33.8% 5793 34.0% 

8 6225 33.4% 5937 33.5% 

16 1377 59.4% 1345 59.4% 

 

In all the cases the data remain the same, and only their interpretation changes. In 

other words, in each case we consider different condition attributes to have happened at 

the same time. For example, with a window size of 4, each 4 neighbouring attributes are 

supposed to belong to the same time step. With a window size of 5, there are 3 condition 

attributes at each time step, with the last time step containing only 1 condition attribute. 

The size and the quality of the tree change as the window size changes, because the 

V2 
V1 V2 

V3 

V3 
V1 
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condition attributes will move from one time step to another. Consecutive window sizes 

result in similar tree sizes and error values, hence some window values are not shown in 

the Table. There is a sharp drop in the quality and size of the tree as we move into a 

window value bigger than 1, because the algorithm cannot use the attributes as freely as 

before. At the last window size, there is a drop in the quality of the tree, because some 

important attributes could not be used ay more. Increasing the window size beyond 16 

(the number of condition attributes) has no effect on the results. Building a temporal 

decision tree in this way is a constraint satisfaction problem [60], where the choice of one 

attribute limits the future choices in that branch of the tree.  

3.3 The TIMERS Algorithm 

To use TIMERS, the user chooses a number of input attributes, which come from data 

D. They include the decision attribute in which the user is interested, da, and also the 

condition attributes that will be used for classification. The other attributes present in the 

data can be ignored. There is no need to temporalise the input data for testing the 

instantaneous case, but for both causal and acausal cases the algorithm needs a window 

size. Since it is usually hard for the user to determine the most appropriate window size 

value, TIMERS accepts a range of values, from a starting window size α to an end value 

β.  

It is possible that the condition attributes have no significant relationship with the 

decision attribute. In such cases, the classification rules will probably be of low quality. 

To detect such an eventuality, the user provides a threshold accuracy value acth. The 

resulting rule sets’ accuracy values are compared to this threshold value, and if all 
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accuracy values are lower, then the algorithm does not have reliable data, and refrains 

from making any judgment.  

TIMERS performs the appropriate temporalisation, generates classification rules, and 

saves the best accuracy values for each of the causal and acausal tests. In deciding the 

best method for describing the relationship between the decision and condition attributes, 

the size of the rules in each rule set is saved along with the corresponding accuracy value 

because the size of each rule set is considered as partially determining its simplicity.  

After this phase, TIMERS decides on the best relationship type. In the simple case 

where there is no overlap between the accuracy intervals, the method that results in the 

best accuracy value will be chosen. If there is an overlap, then the complexity of the 

methods and the size of the rule sets are considered, as explained later in this chapter. The 

TIMERS algorithm appears in Figure 3.4 below. RuleGenerator() creates classification 

rules from input data, and Temporalise() performs temporalisation on data given a 

window size and a position within the window. 
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Input: A sequence of sequentially ordered data records D, minimum and maximum 

temporalisation window sizes α and β, where 0 < α ≤ β, a minimum accuracy threshold acth,  a 
decision attribute da, and a confidence level cl. The attribute da can be set to any of the 

observable attributes in the system, or the algorithm can be tried on all attributes in turn. 

Preference determines whether the user prefers higher accuracy or a simpler method.  

Output: A set of accuracy values and a verdict as to the nature of the relationship between the 

decision attribute and the condition attributes. It could be instantaneous, causal, or acausal.  

RuleGenerator() is a function that receives input records, generates decision trees, rules, or 

any other representation for predicting the decision attribute, and returns the training or 

predictive accuracy, as well as the number of rules generated. 

 

TIMERS(D, α , β, acth, da, cl, preference) 
{ 

   aci = RuleGenerator(D, da);  // instantaneous accuracy; window size = 1 

   for (w = α  to β) 
           for (pos = 1 to w) 

                (acw,pos , ruleSizew,pos) = RuleGenerator(Temporalise(w, pos, D, da), da)  

           end for  

   end for 

 

   acc = max(acα,α, …, acβ,β)  // best causal test 

   aca = max(acα,pos1, …, acβ,pos2),  ∀ acx,pos, 1 ≤ pos < x  // best acausal result 
 

   // Is there is enough relevant information? 

   if (max(aci, acc, aca) < acth) then stop.  

 

   Verdict = "for attribute " + da + ", " 

   Relation = RelationType(cl, (aci, ruleSizei), (aca, ruleSizea), (acc, ruleSizec), preference) 

   case relation of  

          INSTANTANEOUS: verdict += "the relation is instantaneous" 

          ACAUSAL: verdict += "the relation is acausal"  // an element from the future is present 

          CAUSAL: verdict += "the relation is causal" // all condition attributes in the past 

   end case 
   return verdict. 

} 

Figure 3.4 The TIMERS algorithm 

 

The memory space needed by TIMERS is computed as follows. For every run of the 

Temporalise() operator, we get a dataset of  |D| − (w − 1) records, hence the total number 

of the output records created by the TIMERS algorithm is ∑
=

β

αw

1)-(w -|D| . For a 

window size of 1, the dataset already exists (the original dataset). There is no need to 

save each temporalised dataset after it has been used for rule generation. Thus there are a 
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maximum of |D| − (β −1) temporalised records during any iteration. Considering that the 

number of attributes in each record is multiplied by the window size, the maximum 

number of fields in the temporalised dataset will be (β  − 1) × (|D|  −  (β  − 1)) × 

LengthRec + 1. where LengthRec is the number of fields in each original input data record. 

The expression (β−1) reflects the fact that we only include the decision attribute at the 

current time. The 1 at the end of the formula reflects the decision attribute at that time. 

Computation wise, the number of times that RuleGenerator() runs is equal to 1 + 

∑
=

β

αw

w  =  1 + [β × (β  + 1) − (α  − 1) × α] / 2. Hence, the time complexity of TIMERS is 

polynomially related to the time complexity of the RuleGenerator().  

TIMERS uses a statistical test to see if the results of the three tests are close together, 

which results in a simpler method being suggested, even if its accuracy value is less than 

the more complex method. As we will explain later, simplicity depends on both 

conceptual simplicity (for example, an instantaneous relationship is conceptually simpler 

than a causal relationship) and also the number of rules needed to express a relationship 

(a lower number of rules denotes a simpler relationship).  

In more detail, using the confidence level provided by the user in the cl parameter, 

TIMERS constructs a confidence interval for the accuracy, as in Pr[-z ≤ f ≤ z] = cl. 

Normalisation leads to Pr[-z ≤  (f − p) / (sqrt(p × (1 − p) / N)) ≤ z] = cl. In this formula, f 

is the observed accuracy, N is the number of records, and p is the unknown actual 

accuracy value. Solving this equation results in upper and lower bounds for p [83]. The z 

values are determined by assuming a normal distribution. For example, a confidence level 

cl of 90% implies z is 1.65. After computing the interval, TIMERS checks to see if the 
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corresponding intervals overlap. If they do, the method with the simpler type of 

relationship is chosen. The intuition is that even if the simpler method has resulted in less 

accuracy, it could have potentially produced the same or better results.  

As an example, suppose with a confidence level of 90%, we have: the instantaneous 

accuracy aci = 32.5%, intervalaci = [31%, 34%], the acausal accuracy aca = 35%, 

intervalaca = [33%, 37%], and the causal accuracy acc = 37%, intervalacc = [35%, 39%]. 

We assume all methods resulted in the same number of rules. Because the confidence 

intervals of the instantaneous method and the acausal methods intersect, instantaneous is 

chosen because it is considered simpler. Then we consider the causal case, and since the 

intervals of the instantaneous and causal methods do not overlap, the causal method is 

chosen as the final verdict because of its higher accuracy value.   

This example also demonstrates a special case where every two neighbouring 

intervals are overlapping. In this case, starting with the first two or the last two methods 

give different results. In the first case, as shown above, we choose the method with the 

highest accuracy. Here we started the comparisons from the left to the right, or lower 

accuracy to higher accuracy. But when starting from the right to the left (higher accuracy 

to lower accuracy) we end up choosing the simplest possible method. We leave the 

decision about which direction to follow to the user. In the TimeSleuth programme the 

user can choose between "Prefer simpler method" (right to left) and "Prefer higher 

accuracy" (left to right).  

To clarify the previous paragraph, Figures 3.5(a) to 3.5(e) illustrate all possibilities of 

the accuracy intervals and the winning method in each case. A circled number from 1 to 3 

represents the accuracy values of one of the methods: instantaneous, causal, and acausal. 
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The accuracy values are sorted in an ascending order and the circled 3 represents the 

highest accuracy value, which could have been produced using any of the instantaneous, 

causal, or acausal methods. The brackets around each circle show the accuracy intervals. 

We assume that in all three cases the same number of rules was generated. 

 

 

 

(a) No overlap. Method 3 is the winner. 

 

 

 

(b) Methods 2 and 3 overlap. The simpler of methods 2 and 3 is the winner. 

 

 

 

(c) Methods 1 and 2 overlap. Method 3 is the winner 

 

 

 

(d) All three methods overlap. The simplest method is chosen. 

 

 

 

(e) Both pairs of neighbours overlap. If higher accuracy is preferred, 3 is chosen. 

Otherwise 1 is chosen. 

Figure 3.5 Possibilities of accuracy intervals’ relative positions 

To determine which method/relation type to choose, we sort the accuracy values in 

either an ascending order (preferring the method with higher accuracy) or in descending 

order (preferring the simpler method).  Figure 3.6 shows how the best method is selected. 

 

 

 

 

2 31

2 31

2 31

2 31

2 31
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Input: A confidence level cl, three accuracy values corresponding to the instantaneous, acausal, 

and causal methods: aci, aca, acc, and their corresponding number of rules: nRulei, nRulea, 

nRulec, a  preference p for higher accuracy versus a simpler method. 

Output: A verdict as to the best relationship type. 

 

//info[].method contains one of INSTANTANEOUS, CAUSAL, or ACSUAL.  

//info[].Accuracy is the best accuracy value.  

//info[].interval contains the interval of the accuracy value, computed using a confidence value 

 

Function SelectRelationshipType(cl, (aci, ruleSizei), (aca, ruleSizea), (acc, ruleSizec), p) 

{ 

    // initialise the info[] structure 

    forEach method ∈{ INSTANTANEOUS, ACAUSAL, CAUSAL } 
        info[method] = (method , accuracymethod,  ruleSizemethod, Intervalmethod =  

                                                                                 ComputeAccuracyInterval(accuracymethod)) 

    end forEach 
    // if preference is given to higher accuracy, then start the search from lower accuracy values 

    if (p = HIGHER_ACCURACY) then 

       sort_Ascending(info[]); // sort in ascending order of accuracy. 

    else   // SIMPLER_METHOD 

       sort_Descending(info[]) 

 

    winner = 1 

    for (count = 2 to 3) 

        if (overlap(info[winner].interval, info[count].interval))   

        {  // if there is  an overlap, then choose the simpler method 

            if (info[count].method  <simplicity  info[winner].method and 

                 info[count].ruleSize  ≤  info[winner].ruleSize) then 
               winner = count 

        }  

        else 
        { // if no overlap, choose the method with higher accuracy 

            if (info[count].accuracy  >  info[winner].accuracy) then 

                winner = count 

        } 

    end for   
    return info[winner].method   //one of  INSTANTANEOUS, ACAUSAL, or CAUSAL 

 } 

Figure 3.6 Selecting the best type of relationship 

 

Starting with the two methods with the lowest (or highest) accuracy values, we test to 

see if there is an overlap among their confidence intervals. If so, then we choose the 

simpler method. The choice of the simpler method depends on both the conceptual 

complexity of the relation as defined above, and also the number of rules that are needed 
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to express the relationship. In our method the more rules needed to express a relationship, 

the more complex that relationship. This is reflected in our method in the following way: 

If a conceptually simpler method overlaps with a conceptually more complex method, but 

at the same time requires a bigger ruleset size, then priority is given to the method with 

the smaller ruleset size. In other words, for a simpler method to over-rule a more complex 

method, not only should there be an overlap between their accuracy intervals, but the 

simpler method should result in a smaller ruleset size. While our assumed order of 

complexity is subjective, including the size of rules adds an objective element to the 

complexity measure. If there is no overlap in the accuracy intervals, we choose the 

method with the better accuracy value. A winner is then selected among the first two 

methods. This winning relation type is then compared with the third method to determine 

the final method.  

If needed, the algorithm in Figure 3.6 can also be used to select the best window size 

among a number of accuracy values obtained in either the acausal or casual case. In that 

case the order of simplicity is determined by the window size, with smaller window sizes 

being simpler.  

 

3.4 (A)causality and (Ir)reversibility  

The input to the TIMERS method is a set of sequential records. In general, we can 

represent the system under investigation as an automaton (function) with a transition 

function δ(). It is usual to assume that a transition function takes as input a current state 

and an event, where the event causes the state to change. The transition function then 

looks like δ(q = current state, e = current event), and the result is one (if the automaton is 
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deterministic) or more (if the automaton is non-deterministic) next states, chosen from 

the set of all the possible states Q.   

In this paper, we do not see any need to distinguish between the current state and the 

current event. The current state is made up of a number of attributes, and collectively 

they lead to a change. In other words, the current event is considered to be part of the 

current state. A domain expert may decide to designate certain attributes as events if need 

be.  

So a transition function is represented as δ(q) ∈ 2Q.  In general, the reverse function 

δ-1 does not exist. In other words, we can only move forward in time with δ, and knowing 

the current state will not allows us to know the previous state. While this assumption is 

often made in the literature on automata, it is rarely specified explicitly. For this reason, a 

more appropriate name for δ would be a (unidirectional) “next state” function. In this 

case δ-1 would be called a “previous state” function. 

If the transition function δ-1 exists, then we call the automaton reversible. In general, 

δ-1 exists only when the graph of the transitions has only one previous state for any 

current state. A time-reversible automaton can be deterministic or not, as long as the 

above condition is satisfied. Examples of a reversible function are Inc(a) = a + 1, and the 

logical NOT operator, where we can know the original argument if we are given the 

result. Examples of non-reversible functions are multiplication (given the output 6, what 

where the original operands?) and the logical AND operator. We now present these ideas 

formally. 

Consider a set of attributes V = {v1,…vm}. We define the automaton X(Q, δ, Q0), 

where Q ⊆ Vm is a set of current states, δ: Q → 2
Q
 is the transition function,  and Q0 ⊆ Q 
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is a set of starting states. We do not include a ∑ set to denote the events for the sake of 

simplicity of the notation, and consider it integrated into the states. If needed, we can 

define a set Q′ as the set of states, and a set ∑ to include the events, and then define Q = 

Q′ × ∑, and Q0 = Q′0 × ∑. The automaton is called time-reversible if and only if there is a 

δ-1 function where  

if ∀q ∈ Q, δ(q) ≠ ∅, then q = δ-1(δ(q)).  

It is proven that any δ that is a one-to-one (injective) function is reversible [16]. Such an 

automaton is backward-deterministic. 

The above definition of δ-1 is different from an application of δ, where it is quite 

possible to have q = δ(δ(q)) for some or all states q. In such a case we are still traversing 

the graph of the automaton in the “forward” direction, while δ-1 allows us to re-trace a 

path in the graph in the backward direction. δ-1 answers the question “where we would 

have been before, if we wanted to be where we are now?.” Figure 3.7(a) shows an 

example of a non-deterministic, but time-reversible graph. The graph is non-deterministic 

because there are two transitions out of state q. Figure 3.7(b) gives an example of a non-

time-reversible graph, because when being in r, one cannot know with certainty where 

the previous state was. This situation is similar to the two-dimensional space where we 

could not be certain of how we ended up in a specific position (we could have moved into 

the current position from left, right, up, or down). 

 

 

 

 



71

 

 

(a) A non-deterministic, time-reversible graph. 

 

 

 

(b) A deterministic, non-time-reversible graph. 

Figure 3.7 Examples of graphs with different reversibility properties 

 

At each transition, we are only considering the information that is available at that 

point in time. So we do not remember the previous states or any events. Though 

automaton X forms a Markov chain [41] (meaning the next state depends only on the 

current state), a time-reversible automaton is not the same as a reversible Markov chain. 

In a reversible Markov chain the probabilities of a transition between nodes i and j is the 

same as those from node j to i [2], so the concept of a reversible Markov chain is devoid 

of time.  

 Reversible automata are closely related to the conservation of information and 

energy in physics. They are universal computationally [58]. Reversible automata are of 

important theoretical value, both in classical computer science where the problem of 

determining reversibility is non-trivial to solve in general, and is shown to be undecidable 

in the case of any cellular automata with a dimension of 2 or higher [31], and in quantum 

computing, where it is a requirement that the computation be reversible before it can be 

implemented by quantum computing methods [29] because the unitary operators [14] of 
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quantum computing are by definition reversible. It is shown that the more reversible a 

computation, that is, the more it is possible to recover past states from current states, the 

less complex, less costly, and less energy-consuming, the computation will be [5]. These 

results imply that there is an energy loss with information loss. 

TIMERS’ treatment of reversibility is different from the common notion explained 

above, as will be explained. TIMERS can generate rule sets that refer to both the previous 

and next values relative to the decision attribute, as shown in the sliding position 

temporalisation of Table 3.1. However, TIMERS can also use the forward and backward 

methods of temporalisations, with examples in Table 3.1. 

Temporal rules generated in the forward direction of temporalisation refer to the 

previous observations to predict the current value of the decision attribute. This direction 

is reversed for rules generated after a backward temporlisation, where the next 

observations are used for predicting the current value of the decision attribute. The 

implication of this property is that TIMERS can be used to compare the ability of the 

condition attribute values to predict or retrodict the decision attribute’s value.  

If we consider the rules in the forward direction to represent the function δ(), then the 

rules that determine the value of the decision attribute in the reverse direction can be 

represent the δ′() function. Given specific values for the condition attributes, one of the 

rules in the δ() function will fire and predict a certain value for the decision attribute. 

Running the rules in δ() on an input data sets allows us to gather statistics about how 

often each rule is run.  

In general, there are more than one rule that determine the same value for the decision 

value. For example, the value val may be predicted or retrodicted by two or more rules. 
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In the δ-1() function, given a value for the decision attribute, we can assign a probability 

value to each of the rules in δ(), representing the likelihood that it could have been fired 

to produce that result. For example, suppose there are two rules for a certain value of the 

decision attribute, val, and given a dataset D, 60% of the rules that predict that value use 

rule number 1, while 40% use rules number 2. Now given that value val has been 

predicted, there is a 60% chance that the condition attributes match the left hand side of 

rule number 1, and a 40% chance that they match rule number 2. 

 Thus we see that the δ-1() and δ′() functions are quite distinct from each other. δ-1() 

does not contain the concept of running the rules backward in time, but the likelihood of 

being in a specific state. δ′(), on the other hand, implies deriving and running rules that 

refer to the attributes in a backward order of time. In other words, in δ′() we are still 

using the values of the condition attributes to predict the value of the decision attribute, 

and the rules are referencing values backward in time. 

Traditionally, if the δ-1() function exists and is one to one, then we say we have a 

reversible relationship between the values of the condition attributes and the value of the 

decision attribute. TIMERS is not concerned with discovering this function, but it can 

produce both δ() and δ′(), and derive their accuracy values. If δ() results in better 

accuracy values than δ′(), then we define the relationship between the attribute values to 

be time irreversible. Our definition of irreversibility is analogous to the definition of 

causality, except we are using the forward temporalisation method, and not the sliding 

position temporalisation. 

Similarly, if δ′() gives better accuracy values than δ(), or they are close together, then 

we call the relationship between the values of the condition attributes and the decision 
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attribute’s values as time reversible. Again, this is similar to the concept of acausality, but 

here we only use the backward temporalisation methods. 

Now we establish a connection between state transitions and the TIMERS’ sequential 

data. We can consider each line of input data in the input to TIMERS to be a state of the 

automaton, and the following line is considered the next state. Thus the input consists of 

a specific list of state transitions in the automaton, as generated by δ. We consider the 

normal direction of traversing a graph of state-changes to be the same as that of the 

temporal order of encountering the states in TIMERS’ input. The reverse direction would 

be the opposite of the normal direction. Creating decision rules in the forward direction 

amounts to testing the causality of the data, while the decision rules that predict in the 

backward direction are a measure for acausality. This ability of TIMERS is especially of 

use for very complex or inaccessible systems where a formal investigation may be very 

hard or not possible, and we have to use observational data.  

In this context, the sliding position temporalisation method is too general a treatment 

of time. For this reason we either reference the next attributes, or the previous attributes 

in testing for the reversibility of the data. TIMERS generates both δ() and δ′() to make a 

judgement about the time-reversibility of the relationship between the condition attributes 

and the decision attribute.  

To see how TIMERS’ δ() function is related to the original state transition function, 

we note the following. Normally, a state is represented by the values of all the attributes, 

while TIMERS uses classification of a single attribute. Suppose attribute vi is set to be the 

decision attribute, and takes on values from the set Range(vi). The resulting decision rules 

form the transition function δ: Q → Range(vi). In general, Range(vi) can be considered as 
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a merging (generalisation) of many states in V
m
, where attributes other than vi are 

ignored. Since the left hand side of the rules in δ may also miss certain attributes, 

generalisation is performed there too. Figures 3.8(a) and 3.8(b) show how in δ′ many 

states in δ can be merged into one. In these figures the original state transition function is 

shown with thinner lines, while δ is denoted with thicker lines. In δ we move from q to r 

whenever in the original function we move from any state in q to any state in r. Consider 

a decision rule such as if {(v1 = 1) and (v2 = 2)} then (v4 = 5), where v3’s value is not 

important. The merged states in the right hand side of the transition in δ all have the same 

value for the decision attribute v4 (v4 = 5 ), and the rest of the attributes are ignored. The 

merged states in the left hand side all match the condition attributes in the left hand of a 

rule in δ, i.e., they all have v1 = 1 and v2 = 2. We assume that each original state can be 

applied to only one rule in δ. In other words, we assume that the rules in δ can be applied 

unambiguously.  

Figure 3.8(a) shows two rules in δ that predict the same value for the decision 

attribute. So both rules have the same right hand side, as represented by the merged states 

of r. Each rule generalises different states of the original state transition function, as 

specified by the left hand side of the respective rule. 
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(a). An example of generalisation (merging) of states. 

 

 

 

 

(b). δ is deterministic, but the original function may not be so. 

Figure 3.8 Different mappings from the original function to δ 

 

δ predicts the decision attribute’s value using the condition attributes. One would 

expect δ′ to be obtained by re-tracing δ, which would lead us from the decision attribute’s 

value back to the condition attribute’s values, similar to the inverse of the original state 

transition function. This is not the case, and δ′ also predicts the value of the decision 

attribute using the condition attributes’ values, but it refers to the next (and not the 

previous) condition attributes to do so.  

This distinction means that unlike the usual case with the graph of an automaton, we 

should not literally go back along the δ transitions to create δ′. In other words, δ (from a 

causality test) and δ′ (from an acausality test) have distinct graphs, and should be 

traversed independently.  
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As in Figure 3.8(a), each rule discovered in δ or δ′ creates a link in its respective 

graph. Since we traverse the graphs in one direction only, there is no need for the graphs 

to be one-to-one. The graphs can be traversed deterministically because we assume the 

rules can be applied to the data with no ambiguity, so we always know where to go from 

any given state by finding the rule that applies to the data. This characteristic is reflected 

in Figure 3.8(b).  

Considering that δ and δ′ are deterministic, it may seem that TIMERS allows us to 

get rid of any original non-determinism in the state transition function that generated the 

sequential data. Considering that each of δ and δ′ rule sets is associated with an accuracy 

value that reflects how often the rules make a correct prediction, any non-determinism is 

in fact reflected in the accuracy values of the rule sets, which could be less than 100%.  

When given a series of sequential data, the user can choose a different decision 

attribute when running TIMERS, and each choice may result in a different verdict. The 

results are qualified with respect to the choice of the decision attribute, so one should say 

δ is (ir)reversible with respect to a decision attribute with accuracy a%. This verdict is 

then considered a hint at the (ir)reversibility of the original data. 
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Chapter 4 

 

 Derivation and Presentation of Temporal Rules 

 

In this chapter, we show how temporal rules can be derived from sequential data. In 

Section 4.1 we introduce the TimeSleuth programme. TimeSleuth allows the user to select 

the decision and condition attributes, do discretisation and aggregation, derive rules and 

evaluate them, and represent the results in tabular forms. The tabular representations of 

the rules summarise the relationships and lays them out in a temporal order, making them 

perhaps easier for the user to understand [36].  

Section 4.2 introduces a graphical method of representing rules, called a dependence 

diagram. Such diagrams are meant for better understanding of the relations among 

attributes and can represent any classification rule, and not just temporal ones. The 

tabular representations of TimeSleuth focus on a single decision attribute at a time, while 

a dependence diagram can show multiple decision attributes and their relationships 

together. However, unlike the tabular representations, a dependence diagram does not 

explicitly display temporal orders. A dependence diagram can be derived from the tables 

of TimeSleuth, but not vice versa. 
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An alternative form of presenting a temporal rule is as a Prolog statement, and is 

more suited for automatic usage. In Section 4.3 we introduce this possibility by way of an 

example in programming an artificial robot. 

 

4.1 The TimeSleuth Software 

TimeSleuth implements TIMERS II and provides a graphical user interface for the 

user to experiment with different settings and options. The user interface provides a 

number of tabbed panels. In each panel the user can perform a specific operation. In the 

Attributes panel, for example, the user selects the decision attribute(s) and the condition 

attributes, while in the Recommend panel the user is offered clues as to the nature of the 

rule set. TimeSleuth is written in Java and uses C4.5 as its rule generator. We chose C4.5 

because it has become the default rule generator in the literature, and also because of its 

source code availability.  

We have modified C4.5’s source code so it can communicate with TimeSleuth, 

accepting new input commands and outputting relevant temporal data. As a result the 

user views C4.5 as integrated into TimeSleuth, even though C4.5 is called as an external 

programme. The modified source codes for compilation under different operating 

systems, as well as a precompiled version for use under 32 bit Microsoft Windows 

products are included in TimeSleuth’s package. Detailed information about TimeSleuth 

can be found as online help files in the TimeSleuth package. 

TimeSleuth can be used, with reduced abilities, even if C4.5 has not been modified 

for TimeSleuth. An option in TimeSleuth allows the user to inform it of this situation, so 
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it will not provide the non-modified C4.5 with options it cannot understand. In this case 

TimeSleuth mainly becomes a graphical interface for C4.5. 

C4.5's input consists of at least two files. A .data file which contains the values of 

observed attributes, and a .names file that contains the names and possible values of the 

attributes. In the data file each line consists of the value of the condition attributes that 

determine the value of a single decision attribute. The decision attribute comes at the end 

of the line. The values are separated by comas (,). An example .data file looks as in 

Figure 4.1:  

1, 0, 7, 8, 3, 4, 5 

1, 0, 4, 13, 2, 5, 4 

1, 0, 7, 8, 2, 4, 3 

1, 0, 12, 0, 3, 3, 4 

1, 0, 7, 8, 0, 4, 4 

0, 0, 11, 8, 1, 4, 4 

1, 0, 7, 8, 0, 4, 4 

0, 0, 11, 8, 2, 4, 3 

Figure 4.1 Contents of a .data file 

 

There are 6 condition attributes (the first 6 attribute values in each line) and one 

decision attribute in these data. The decision attribute takes on the values 3, 4 and 5. C4.5 

accepts continuous, discrete, and symbolic input values. After the rules are generated, 

C4.5 tries them on the contents of the .data file to measure the training accuracy value. 

The decision attribute remains nameless in a .names file. By default C4.5 calls the 

decision attribute “class.” TimeSleuth calls the decision attribute simply 

"originalDecision." The range of the class come first in the .names file. The names and 

ranges of the condition attributes then follows. A matching example for the data in Figure 

4.1 would be as in Figure 4.2:  
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1, 2, 3, 4, 5, 6  

x: 0, 1 

y: 0, 1, 2, 3 

teta: continuous 

zeta: continuos 

u1: 0, 1, 2, 3, 4 

u2: 3, 4, 5 

Figure 4.2 Contents of a .names file 

 

 

In this file we see that the decision attribute can take on discrete values from 1 to 6, 

and the names of the condition attributes are x, y, teta, zeta, u1 and u2. The mapping from 

names to data values for the first line of data is shown in Figure 4.3. 

x y Teta Zeta u1 u2 decision 

1 0 7 8 3 4 5 

Figure 4.3 Attribute names and corresponding values 

 

In addition to .data and .names files, C4.5 can be provided with a .test file. The format 

is exactly like a .data file. The contents of the .test file are not used during the tree and 

rule generation phase, but are consulted to test the generated trees and rules to measure 

the predictive accuracy of the tree or the rules.   

All three files (names, data, test) should have the same name, and their extension 

determines their type. An example would be weather.names, weather.data, and 

weather.test. 

Figure 4.4 shows a snapshot of TimeSleuth's window, showing the input handling 

panel. After reading the input files, a list of the discovered attributes is presented to the 

user. One can select a decision attribute by highlighting it. The user should inform 

TimeSleuth about the presence of a .test file by clicking on the appropriate checkbox.  
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Figure 4.4 TimeSleuth 's input handling panel 

 

 

The data used in Figure 4.4 and the following figures contains weather observations 

gathered hourly. The decision attribute, "originalDecision" in TimeSleuth, is the Soil 

Temperature.  

Unlike with standard C4.5, in TimeSleuth the user can choose more than one decision 

attribute. In such a case, C4.5 is invoked multiple times, each time with a different 

attribute as the decision attribute. Using the original input files, TimeSleuth automatically 

generates the appropriate .data, .test, and .names files which contain the temporalised 

data and attribute names. 
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The user can choose to discretise the attributes using the "Discretisation" panel as 

shown in Figure 4.5. Two methods are available. In Method one, the attribute's range of 

values, as present in the input data file, is divided into segments of equal length. Method 

2 takes into consideration the distribution of the values, and divides the range into 

segments that contain the same number of values. This consideration ensures the values 

in a denser region of the attribute's range are better represented. The steps taken in the 

discretisation process are shown in Figure 4.5. 

 
Figure 4.5 The Discretisation panel 

 

The main assumption in TimeSleuth is that the program is provided with the values 

that are observed at consecutive time steps. However, the user can instruct TimeSleuth to 

use the aggregate value of an attribute in forming its rules. For example, the user may 

decide to investigate the effect of the minimum value of the Air Temperature during a 

certain window size, as shown in Figure 4.6. In such a case, TimeSleuth computes the 

minimum, and uses that value instead of individual temperature values. Choosing the 

aggregate function min() on x1 with a window size of 2 would result in the record: < x12, 

x13, x14, x15, x22, x23, x24, x25,  min(x11, x21)>.  In the actual output file, the last attribute will 
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be the decision attribute because that is the format expected by C4.5. The effect of having 

aggregate attributes is explained later, when we introduce the classification panel. 

 

 
Figure 4.6 The Aggregation panel 

 

 

The actual running of C4.5 happens in the C4.5Settings panel, as shown in Figure 4.7. 

It allows the user to specify the location of C4.5's executable files and other related 

directories. The user can also provide any optional run-time arguments to C4.5, even 

though the arguments needed for TimeSleuth's functioning will be automatically 

provided. Here the user can inform TimeSleuth if C4.5 has not been patched. The default 

values provided in this panel make sure that C4.5 will function in a backward compatible 

way, in case it has not been modified to work with TimeSleuth. 
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Figure 4.7 The C4.5Settings panel 

 

If C4.5 is not modified, TimeSleuth can still be used to discover causal relations, 

because it can still perform the temporalisation operation. However, there is a potential 

problem here: C4.5 does not rely on the names of the attributes to identify them. Rather, 

it uses their locations in the .data file. If TimeSleuth simply temporalisess the data and 

copies the names in the .names file multiple times, then in the output the attribute's names 

from different time steps would be confused. The temporally indexed attribute names as 

in x11, x21, x31, etc. are not actually differentiated in a .names file, and all are called x1 by 

C4.5. In other words, with an unmodified C4.5 we may not be able to distinguish the 

same attribute at different time steps. If C4.5 has been modified, it actually outputs 

temporal information in the rules by sorting the attributes according to their time of 

appearance. So a rule might look like this: 

IF {At Time 1: (x1 = 1) AND At Time 2: (x4 = 1) AND AT Time 3: (x1 = 5)} THEN 

At Time 4: x5 = true 

As seen later, TimeSleuth uses a tabular form to display the same information. If C4.5 

is unmodified, then the user can instruct TimeSleuth to add a time index (_t<time>) to the 
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names it generates. So even though C4.5’s output may be temporally out of order because 

no sorting is done, but it will still be understandable because the attributes from different 

time steps are distinguishable.  An example is the following rule: IF {(x1_t1 = 1) AND 

(x1_t3 = 5) AND (x4_t2 = 1)} THEN x5_t4 = true.  

The rules generated by c45rules have a confidence level. In order to filter the rules, a 

user can specify a minimum confidence level, and only rules with higher confidence 

values will be presented. 

If aggregate attributes are present, then the output rules will include the keyword 

"During Window" to make it clear that the aggregate value of the specified attribute is 

seen during the whole window. A rule would look like: IF {During Window: x3 >= 0 

AND At Time 1: (x1 = 1) AND At Time 2: (x4 = 1) AND AT Time 3: (x1 = 5)} THEN At 

Time 4: x5 = true 

C4.5 is supervised, because the user has to indicate the decision attribute, and also has 

to tell C4.5 exactly which values will be taken on by the decision attribute. TimeSleuth 

allows the user to specify more than one decision attribute, and can optionally extract the 

values taken on by the decision attribute from the .data file. It outputs a warning message 

if the .test file contains a value that is not seen in the .data file. These abilities turn 

TimeSleuth into an unsupervised tool, as the user simply has to run the program with 

minimal instructions as to the target attribute and the values it can have. 

C4.5 consists of two main programmes. The first one, c4.5.exe, creates a decision 

tree, and the c4.5rules.exe generates classification rules from this tree. There are two time 

windows in the classification panel. The first one, called "Temporalising Window" is as 

the name implies. Its value is used to temporalise the input data for both c4.5 and 
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c4.5rules. This value is then provided to c4.5rules so that it can sort the output 

temporally. However, this value is not provided to the tree generation program, c4.5. So 

the decision tree is generated with no regard to any window size. The value "c4.5 Time 

Window" is meant to affect the decision tree, as explained in Chapter 3. This value, if 

different from 1, should be the same as the temporalisation window size.  

Finding a suitable window size for the data under investigation can be a challenge. 

For this reason TimeSleuth allows the user to run it in a batch mode, wherein it tries 

consecutive values for the window size. Training and testing accuracy can be employed 

to guide the search. As shown in Figure 4.8, the user can decide to explore all values, or 

stop after the accuracy has reached a threshold, or after the accuracy has stopped 

improving. The running time is determined by C4.5's speed, which in our experiments 

has been good, even for fairly large values of the window size. 

 

 
Figure 4.8 Exploring different window sizes 

 

After generating accuracy values using different methods, a decision has to be made 

as to which method gives the better results. The Recommend panel performs this test. 



88

The best values of each of the instantaneous, causal, and acausal tests are imported from 

the cuasality panel into the recommend panel. Alternatively the user can fill in the fields 

with appropriate values. The recommendation of a method can be offered based on both 

the training and testing results, as shown in Figure 4.9 below. 

 

Figure 4.9 The Recommend Panel 

Though C4.5 generates rules for only a single decision attribute at a time, TimeSleuth 

can handle multiple decision attributes by repeatedly calling C4.5. The user selects the 

decision attributes, and different rule sets are created for each such attribute. TimeSleuth 

presents the rules in different tables. The user has the choice to see the rules laid out 

according to the time of each attribute’s appearance. It is also possible to summarise the 

rules and see which attributes appear in what time steps. The user can optionally see 

which attributes are actually used to classify the training and testing data. These 

information are presented to the user in the Analysis panel. 

In the analysis panel, the user can see how the selected window size has affected the 

resulting rules. As shown in Figure 4.10, the user can opt to see the rules laid out 
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according to the time steps in which the attributes appear. This display shows how 

important each attribute has been in forming the rules. 

 
Figure 4.10  Temporal layout of rules 

 

In Figure 4.11, we see that many of the condition attributes used to determine the 

value of the soil temperature (originalDecision) come from previous time steps. In other 

words, the current temperature of the soil depends on attributes measured previously. 

Using standard C4.5 with such data obviously would not be as revealing. As seen in 

Figure 4.11, the previous value of soil temperature appears in 84.3% of the rules, which 

supports the common sense guess that the current temperature is related to the 

corresponding observation an hour ago. 
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Figure 4.11 Statistics about the attributes 

 

In Figure 4.12, TimeSleuth shows the frequency of attribute usage in rules that were 

actually fired. In other words, the more a rule has been used (on test data or on training 

data), the more important those attributes will be.  Both training and testing results are 

displayed. The two values are separated by ":". 

 

 
Figure 4.12 Frequency of attribute usage in rules 

 

Figure 4.13 shows some addition information about the rules and how they were 

used. The column headers are self-explanatory. 
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Figure 4.13 Rule usage and other related data 

 

In TimeSleuth the user can opt to have aggregate attributes. An aggregate attribute 

contains the value of an attribute’s values combined with a function over the length of the 

window. For example, one could have the Logical AND of the value of “Play” over 3 

days as a single attribute. This new attribute replaces the “Play” attributes over the 3 

days. In this example the result would be a “Yes” if it were possible to play in any of the 

three days, and “No” if it was not possible to play in at least one of the three days that 

appear in the temporalised record. An aggregate attribute is not considered to have a 

specific time of occurrence, and so is ignored in the decision making processes as to the 

nature of the relationship.  

More precisely, an aggregate attribute is considered to have happened at time 0, 

which is treated specially. The name of the aggregate attribute comes from the name of 

the function and also the name of the original attribute. In the current example it would 

be and(Play). All attributes except the decision attribute can be aggregated. TimeSleuth 

supports the following aggregation functions: Sum(), Minimum(), Maximum(), Mean(), 

Mode(), Median(), And(), and Or().  
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4.2 Dependence Diagrams 

Here we introduce building diagrams that show the attributes' dependence on each 

other. In a dependence diagram, attributes are connected together based on how much 

they are actually used in predicting each other's values. A decision attribute depends on 

another (condition) attribute if it appears in rules that are used to predict the decision 

attribute. The rules can be causal, acausal, or instantaneous. A dependence diagram does 

not make any distinctions in this regard. An example dependence diagram for the robot 

data is shown in Figure 4.14 below. The data comes from an artificial robot doing a 

random walk in a two-dimensional space, where x and y denote the position, a is the 

random action taken (the direction of movement) and f shows the presence or absence of 

food. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14 An example dependence diagram 
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4.2.1 Definitions 

Definition 4.1: Static Dependence 

For any set of rules R that predict the value of attribute d, 

If condition attribute a appears in at least one rule, then d depends on a.  

• If r ∈ R, and a ∈ CONDITIONS(r), then d = DECISION(r) depends on a. 

Regardless of specific time steps, the more rules in which attribute a appears, the 

more the dependence of d on a. 

• d depends on a with strength s% if a appears in s% of the rules, written as Dd(a)  

In a temporal rule, a may appear at different time steps. The frequency of its 

appearance in the rules determines the strengths of the dependence. 

• In rule r, d depends on a with strength s% at time step t if a appears in s% of the 

rules at time step t, written as Dd,t(a)  

To compute Dd(a) in a temporal rule, we use the following method: 

With a window size w = 1 and 2: Dd(a) = Dd1(a) 

With a window size w > 2: Dd(a) = max(Dd,1(a), … Dd,w-1(a)) 

Example: Suppose the ruleset R contains 2 rules: {[if at Time 1: <a = 1> and at Time 

2:<a = 1> and <b = 2>, then at Time 3: <d = true>], [if at Time1: <a = 3> then at Time 3: 

<d = false>]}. 

Here we have the following: Dd(a) = 100% (a appears in all rules), Dd(b) = 50% (b 

appears in half of the rules).  

From the previous example we have Dd1(a) = 100%, Dd2(a) = 50%, Dd1(b) = 0%, 

Dd2(b) = 50%. 

Definiton 4.2: Dynamic Dependence 
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Dynamic dependence is similar to static dependence, except the strength of the 

dependence is determined by the rules that actually get used for determining the value of 

the decision attribute. In other words, only the rules that get fired by the test dataset are 

considered for determining the strength of the edges.  

In the previous example, suppose only the first rule was fired. In this case we have: 

Dd(a) = 100%, Dd(b) = 100%. Dd1(a) = 100%, Dd2(a) = 0%, Dd1(b) = 0%, Dd2(b) = 100%. 

In what follows, the phrase "appears in a rule" designates static dependence, while 

"used for prediction" characterises dynamic dependence. 

We use a threshold to prune weak and accidental dependencies.  

Definition 4.3: Threshold Dependence and Independence 

d is dependent on a if Dd(a) > ε, where ε is a user-specified threshold.  

Otherwise, d is independent of a. 

Definition 4.4: Dependence Diagram 

A dependence diagram is a possibly cyclic, directed, weighted graph  <N, L>, where 

N is a set of nodes, each representing an attribute, and L is a set of links, each 

representing the dependence of a decision attribute on a condition attribute. The direction 

of the link is from the condition attribute to the decision attribute. Hence a node 

represents a decision attribute when links are pointing to it, and a condition attribute 

when links are pointing away from it. There are values (weights) assigned to both the 

nodes and the links.  

To create a dependence diagram, first the rulesets for predicting the values of one or 

more decision attributes should be generated. The diagram then follows from the rulesets. 

In both static and dynamic dependencies, the weight of a link is the same as the strength 
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of the condition attribute. For nodes, in a dynamic dependency, the weight of a node is 

the training or testing accuracy of the rules created for predicting the decision attribute 

that corresponds to the node. Nodes have no weight in static dependency because rules 

are not run, hence no accuracy values are available. Traversing a dependence diagram 

beyond one link is not possible, as by definition only the immediate links to and from a 

node are meaningful. This characteristic sets the dependence diagram apart from a 

standard graph. 

 

4.2.2 Pruning a Dependence Diagram 

Pruning a dependence diagram is performed at two levels. At the link level, we prune 

links that do not have enough strength, or in other words, enough importance, in 

determining the value of a decision attribute. At the node level, we remove whole 

relationships, where the evidence for the relationship is not good enough. Node level 

pruning is only possible with dynamic dependence diagrams. 

 

Link oriented pruning: Each link in the diagram represents the strength of a decision 

attribute's dependence on a condition attribute, as determined by the number of times the 

attribute has appeared in the rules predicting the decision attribute. Links that have a 

strength value below a certain level can be pruned. 

 

Node oriented pruning: Each node in a dependence diagram represents an attribute. 

Associated with each node is the training or testing accuracy for that attribute when it is 

set as a decision attribute. This accuracy value is called the node’s strength. All the links 
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that point to nodes with a strength value below a certain level are pruned, regardless of 

their strength. The node itself is removed if all the links to and from it are pruned, and its 

strength is below the threshold.  

Examples of pruning dependence diagrams are presented in the chapter on 

experimental results. 

 

4.3 Temporal Rules as Prolog Statements 

In this section we describe how TimeSleuth generates Prolog Statements, to be used 

in any situation where rule execution is needed. Specifically, we show how these 

statements can be turned into a plan of action for programming a simple creature’s 

movements in an artificial life [48] environment called URAL (University of Regina 

Artificial Life) [87]. This representation is especially appropriate when the rules have 

been derived with a window size of two, implying a “before” (the antecedent of the 

Prolog statement) and an “after” (the consequence of the statement). 

 

4.3.1 Rules Governing an Artificial Robot 

Programming robots usually involves writing special programme that determine the 

robot’s behaviour given the sensor values. There have been attempts at automatic 

programming of robots. Such as Reinforcement Learning or Genetic Programming. But 

here too a domain expert must explicitly provide the system with high-level information. 

 For Reinforcement Learning the work includes deciding on the behaviour that should 

be reinforced, and a payoff function, among others. For Genetic Programming one should 

determine sets of terminals and primitive functions and come up with a suitable fitness 
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function. A discussion of this aspect of Genetic Programming and Reinforcement 

Learning appears in [45]. Implementing a system to actually produce the results should 

come next. There is no guarantee that performing these pre-processing steps will be 

easier than writing a program manually. In the rest of the section we show how Prolog 

rules are created, and investigate automatically generating Prolog programmes in the 

simple environment of URAL. 

URAL is a discrete event simulator where known atemporal and temporal rules 

govern an artificial environment. Having complete knowledge about the URAL domain 

allows us to judge the quality of the discovered rules, and this property will be explored 

in the chapter on experimental results. Other kinds of data would have required 

interpretations as to the true nature of relations among the attributes, making the process 

of judging the output more complex and open to debate.  

The world in URAL is a rectangular, two-dimensional board with a robot living in it. 

Food exists at specific locations on the board. The robot can sense its position and also 

the presence of food at the current position. The food (source of energy) can be used to 

increase the energy level of the robot. The robot performs a random walk in the domain: 

at each time-step, it randomly chooses one of the following actions: left (L), right (R), up 

(U), or down (D).  Left and right correspond to moving along the x-axis and up and down 

to moving along the y-axis. The robot can sense which action it takes in each situation. If 

it attempts to move beyond the boundaries of the board, the move is ignored and the 

location of the robot is left unchanged. 

In URAL, we can see the contents of the robot's “brain” in a window as shown in 

Figure 4.15. Each circle in this figure denotes a (x, y) position in the world. The empty 
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locations have not been explored, or they may denote obstacles. The lines show the paths 

taken by the robot as it has moved from one location to the next (the lines start at the 

center of the starting location). An obstacle can be recognised if there is a line from the 

center of a location to itself, which means that a move from that location towards the 

obstacle resulted in the robot remaining in the same position. 

Figure 4.15 A visual representation of the robot’s brain 

The brain is the learning mechanism of the robot and follows conventional Situation 

Calculus [54] concepts, where different situation are linked together via movement 

actions. As time passes, more and more of the board are explored unsupervised, and the 

brain will register the locations and the appropriate movement to go from one location to 

the next. There is a one-to-one correspondence between the locations in the brain and the 

world. This brute-force memorisation of the explored locations allows a planner to find a 

way from the robot's current position to a location that contained food the last time it was 

visited. The planner simply finds a route from the current location to the location of the 

food. The user can activate the planner, or it can be activated automatically whenever the 

robot's energy reaches a certain threshold. The success of the plan depends on whether 

the world is dependable, i.e., if what we observed in the past is valid now. 
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The intuition behind this learning approach is to automate the task of teaching a robot 

to behave properly in an unknown environment. The robot explores the environment by 

itself during a learning phase, and makes a map in its brain. The user can then ask the 

robot to go to a desired position. If the robot has already explored that position, then it 

can plot a series of actions to get to the requested position. For this scenario to work, the 

environment should be simple enough for the robot to be able to memorise the interesting 

positions and the sequence of actions that should be performed to get there. Surprises 

(ending up in a position that is not on the original path to the desired position) can be 

handled by re-planning to find a new path from the current, unexpected, position to the 

desired one.   

The main problem with this approach is that it cannot perform any generalisation. The 

brute-force approach is exponential in nature and thus inefficient in the amount of space 

it needs. The bigger the map of the environment, the harder it would be for it to be 

searched for a path.  

One way of manually programming a robot is by using Situation calculus, which is a 

method of describing the effects of actions. Each situation can be considered a snapshot 

of the values of a set of attributes. One can move from a situation to another by 

performing actions. This movement can result in a possibly cyclic graph with situations 

as nodes and actions as links between the nodes. One can interpret the transitions 

between the situations as the execution of rules. The starting situation forms the left hand 

side of the rule, and the resulting situation forms the right hand side. Planning is easy 

here: To go from the current situation to a desired situation, first make sure that they are 

both in the graph, and then find a path connecting them. Following this path can be 
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regarded as executing the plan [65]. The familiar problem with this brute-force approach 

to representing the effects of actions is that the number of possible situations grows 

exponentially as the number of attributes increases or their domains become larger. This 

problem can make representing a graph very expensive or even impossible.  

At the other end of the spectrum one can represent the situations and the transitions 

among them using first order logic formulas. [57] suggests that logic is a an appropriate 

way of representing knowledge. Suppose do(A, S) means performing action A in situation 

S, with the result being another situation. As an example, a statement like has(O, 

do(pick(O), S) would then mean that if in any situation the agent picks up an object O, 

then it has the object O in the next situation.  

This method of representation allows us to generalise across attribute values because 

the statement is true for many values of O and S. It also generalises across attributes 

themselves, because the statement holds irrespective of what other attributes (other than 

O and S) hold at the time. This form of representation has been used for programming 

purposes. For example, in [49] rules extracted in a situation calculus domain are 

considered as logic programmes. In GOLOG [47] which is a programming language 

based on Situation Calculus, the programmer writes code to specify the initial state of the 

environment, the preconditions and the effects of actions. This approach results in 

efficient representations of the domain.  

Our aim is to simplify the process of writing plans. We attempt to do this by deriving 

the rules of the environment automatically and then using them as parts of a plan 

generator [40].  
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4.3.2 Generating Prolog Statements 

Each individual rule is concerned with learning the immediate effects of individual 

actions. After knowing these effects, we can combine the actions in the form of a plan 

and come up with more complex behaviours. Most other work on planning starts at this 

point, because they consider the problem of knowing the effects of actions as already 

solved.  

The rules created by TimeSleuth can easily be represented as Prolog statements. The 

c4.5rules programme in the C4.5 package generates rules from a decision tree. With 

TimeSleuth this program is modified [34] to optionally generate its rules in Prolog. When 

the user gives the command line option of '-p 0', or an option in TimeSleuth’s user 

interface is selected, a <file stem>.pl Prolog file will be created in addition to the normal 

output. The generated Prolog statements are in the Edinburgh dialect and can be fed to 

most Prolog interpreters without change. 

There is a problem in using Prolog to represent temporal rules: there is no concept of 

time in standard Prolog. But as explained later, using Prolog to represent the rules is 

especially appropriate in temporal domains, where the decision attribute is actually one of 

the condition attributes, seen at a later time. A temporal order is implicitly present in 

Prolog because it follows a rule's conditions from left to right.  

So the problem disappears when we set the window size to 2 and perform 

temporalisation in the forward direction, as the condition attributes will all be coming 

from the previous time step relative to the decision attribute. The following discussion 

will concern data generated from the artificial creature in URAl, where X referes to the 

robot's position along the x axis, and A refers to the action (direction of movement). Table 
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4.1 shows parts of an example set of statements generated by TimeSleuth when the 

decision attribute is x2 (The position of the robot at time step 2). 

Table 4.1 Three sample Prolog statements generated by TimeSleuth 

class(A1, X1, 0) :- A1 = 2, X1 = 1. 

class(A1, X1, 2) :- A1 = 3, X1 = 1. 

class(A1, X1, 3) :- A1 = 2, X1 = 4. 

 

In Table 4.1 a value of 2 and 3 for action A1 could mean going to the left and right, 

respectively. Following a classification terminology, the results are designated by a 

predicate called "class." The condition attributes (action A1 and position X1 in this case) 

come first, and the value of the decision attribute (the next value of x) comes last. In the 

head of the rules, the condition attributes are used for the decision making process. In our 

example temporal data, A1 and X1 belong to the current time step, while the classification 

is done for the value of x in the next time step.  

To use such rules the user can issue queries like class(2, 4, X2) (where does the 

creature go from x = 4 if it moves Left?). If we are dealing with more than one sensor 

attribute (x and y for example) we could rename "class" to something like "classx" to 

avoid name clashes. 

Notice that the automatically generated Prolog statements use the unification operator 

(=) instead of the comparison operator (=:=). This allows the user to traverse the rules 

backward and go from the decision attribute to the condition attributes, or from a set of 

decision and condition attributes, to the remaining condition attributes. Some example 

queries are class(A1, 1, 2) (which actions take the creature from x = 1 to x = 2?) or class 

(A1, X1, 3) (which action/location pairs lead to x = 3?). This makes C4.5’s discovered 

rules generally more useful. 
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TimeSleuth can generate rules that rely on threshold testing and set membership 

testing. If we use the standard Prolog operators of =< and > for threshold testing, and 

implement a simple member() function for testing set membership, then we would not be 

able to traverse the rules backward, as they lack the ability to unify attributes. So if we 

had a clause like: class(A, B, C) :- A =< B, member(A, C), then we would be unable to 

use a query like class(A, 3, [1, 2, 3]), because Prolog can not perform the test =< on 

attributes that are not unified.  

Adding the unification ability to =<, > and member() will remove this limitation. For 

example, X > 10 would choose a value above 10 for X if it is not already unified, and 

member(X, [1, 2, 3]) would unify X with one of 1, 2, or 3 if it is not already unified. Both 

cases would always succeed if X is not unified, but could fail if it is. We have written 

some simple code to do just this and the results are shown in Table 4.2. We employed a 

deterministic method to choose the value of the attribute that is going to be unified, but 

one could use a random method too. ule (unify less-equal), ug (unify greater) and 

umember() (unify member) are the unifying counter parts of =<, > and member(), 

respectively. 

Table 4.2 Prolog operators and functions for planning 

Name Unifies? Implementation 

=< No Standard 

> No Standard 

member() No member(A, [A|_]). 

member(A, [_|B]) :- member(A, B). 

ule Yes :- op(800, xfx, ule). 

A ule B :- var(A), A = B. 

A ule B :- A =< B. 

ug 

 

Yes :- op(800, xfx, ug). 

A ug B :- var(A), A is B + 1. 

A ug B :- A > B. 

umember() 

 

Yes umember(A, B) :- var(A), [X|_] = B, A = X. 

umember(A, B) :- member(A, B). 
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If the argument to the left of ule is not unified, ule sets its value to be the same as its 

argument to the right, and returns with success. If the left hand side argument is already 

unified, then it does a =< test. The ug operator does the same with regard to >. If 

unification is needed, it sets the left hand side argument to the value of the right hand side 

argument plus 1. In both cases the right hand side argument should already have been 

unified. The function umember() unifies the first argument with the first member of the 

list if unification is needed. The second argument to this function should have already 

been unified. These conditions seem to hold for rules generated by TimeSleuth, so it can 

generate rules of the form class(A, B, C, 0) :- A = 1 , B ug 10, umember(C, [1, 2, 3]). As 

explained below, this unification ability has another advantage: it allows us to generate 

plans by backward chaining in the rules. 

To create a Prolog plan generator, we have to make manual modifications in the 

Prolog statements generated by TimeSleuth. The results will be a set of rules that search 

backward from a desired situation to the current situation, and if such a path is found, we 

prints the actions that have to be performed to get to the desired situation. The 

modifications should be done manually because we have made the changes to c4.5rules 

in a general manner and compatible with the normal output of C4.5. The Prolog clauses 

that are generated simply do a normal classification without caring about any "bigger 

picture" that may exist in a particular application such as planning. We now go over the 

modifications needed for planning. Suppose we start with the rule: class(A1, X1, 0) :- A1 

= 2, X1 = 1. 
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We have to make sure that Prolog does not get stuck in plans with cycles, where the 

robot visits the same position unendingly. To prevent this problem we keep track of the 

classes we have already visited. This is done by adding a list attribute to the class() 

clause, and adding code for cycle-prevention. So now we have this rule: class(A1, X1, 0, 

P1) :- A1 = 2, X1 = 1, not(umember(X1, P1)), P2 = [X1|P1]. 

X1 is used to distinguish among the steps in the plan. If we do not find the value of X1 

in our list, then we know we are not in a cycle. If this holds we add it to the list P1 to get a 

new list P2, and continue from there. 

In a temporal domain one of the condition attributes may actually be the previous 

value of our decision attribute. In this example x has this property. We now have to make 

this fact explicit, because we want Prolog to make sure that we are actually in the 

previous position before advancing to the next one. To do this we introduce the class() 

clause in the condition part of the Prolog statements, which will allow Prolog to use 

recursion and try all the paths that lead from one class to the next. So we now have: 

class(A1, X1, 0, P1) :- A1 = 2, X1 = 1, not(umember(X1, P1)), P2 = [X1|P1], class(_, _, 1, 

P2). 

Notice that the value 1 in class(_, _, 1, P2) comes from X1 = 1, as in this example 

class() is C4.5's name for the x position. Now Prolog can search for a way to get the robot 

from the starting state to a desired state. 

We can add a statement to print the plan after it is generated. This is simple to do: 

class(A1, X1, 0, P1) :- A1= 2, X1 = 1, not(umember(X1, P1)), P2 = [X1|P1], class(_, _, 1, 

P2), printOut(A1, X1). 
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Finally, we introduce the current position as a class statement. For example, if we are 

currently at X1 = 0, we add the clause class(_,_,0,_) to the set of rules. Intuitively this 

means we are currently at position 0, and we do not care how we got here. 

Automating the above steps requires c4.5rules to know the previous value of the 

decision attribute. Conveying this information to c4.5rules is not very easy, so the 

transformation is done manually.  

Performing the above steps on the rules in Table 4.1 gives us the rules in Table 4.3. 

The helper functions not() and printOut() are also provided. The function umember() has 

already appeared in Table 4.2. 

Table 4.3 Prolog rules modified for planning 

class(_, _, 0, _). 

class(A1, X1, 0, P1) :- A1 = 2, X1 = 1, not(umember(X1, P1)), P2 = 

[X1|P1], class(_, _, 1, P2), printOut(A1, X1). 

class(A1, X1, 2, P1) :- A1 = 3, X1 = 1, not(umember(X1, P1)), P2 = 

[X1|P1], class(_, _, 1, P2), printOut(A1, X1). 

class(A1, X1, 3, P1) :- A1 = 2, X1 = 4, not(umember(X1, P1)), P2 = 

[X1|P1], class(_, _, 4, P2), printOut(A1, X1). 

not(G) :- G, !, fail. 

not(G). 

printOut(A, X) :- write('Robot is at: '), write(X), write(', it does 

action: '), write(A), nl. 

 

Using the above statements, the user can perform Prolog queries of the form class(_, 

_, 7, []) to find a plan for going to position x = 7. He can include a position in the last 

argument of his query to prevent that position from showing up in the plan, as anything in 

that list will be avoided. Prolog will then print out the actions that should be performed to 

get from the current position to the desired position. 

C4.5 assigns a certainty value to each rule it generates, which shows how reliable that 

rule is. TimeSleuth can optionally include certainty information in the generated Prolog 

rules. Standard Prolog does not support the notion of reliability of a statement. To add 
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this information to the Prolog statements in a way that would be understandable to most 

Prolog systems, we use a pseudo random number generator to cause a rule to fail in 

proportion to its certainty value. A random integer is generated and tested against the 

certainty value. A statement can fail if this test fails, no matter what the value of the 

condition attributes. C4.5 computes the certainty values as a number less than 1 and 

outputs them with a precision of 0.001. TimeSleuth multiplies this number by 1000 to 

convert it to an integer. It outputs the necessary code to handle the certainty value if the 

user invokes it with a '-p 1' command line argument, or the appropriate option from 

TimeSleuth’s user interface.  

We used example Prolog statements generated from the Letter Recognition Database 

from University of California at Irvine's Machine Learning Repository [8] to illustrate the 

certainty values (URAL data would result in very high certainty values). This database 

consists of 20,000 records that use 16 condition attributes to classify the 26 letters of the 

English alphabet. The 16 attributes are named A1 to A16. The decision attribute encodes 

the index of the letters. The results, showing some statements for the letter "I," are shown 

in Table 4.4. 

Table 4.4 Prolog statements with certainty values 

class(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, 8) 

:- random(1000, N__), N__ < 793, A10 = 8, A12 = 5, A13 = 3, A14 = 8, 

class(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, 8) 

:- random(1000, N__), N__ < 793, A7 = 9, A13 = 0, A14 = 9, A16 = 7. 

class(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, 8) 

:- random(1000, N__), N__ < 707, A6 = 9, A10 = 7, A11 = 6, A13 = 0. 

 

All condition attributes are represented in the left-hand side of the Prolog statements, 

which allows Prolog to distinguish among the condition attributes by using their position, 

so the user can specify the attributes unambiguously. In Table 4.4, the first rule has a 
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certainty value of 79.3%. The random(1000, N__) function assigns a number between 0 

and 999 to N__. This value is then compared to the certainty value of the rule, which is 

793. The statement could fail based on the results of the comparison. The random number 

is named N__ to lessen the chances of an accidental clash with the name of a condition 

attribute. One could implement the random number generator as follows [15]: 

seed(13). 

random(R, N) :- seed(S), N is (S mod R), retract(seed(S)), 

         NewSeed is (125 * S + 1) mod 4096, asserta(seed(NewSeed)), !. 

We have taken an active approach to representing the certainty values, because they 

can actually cause the statements to fail if the random number is bigger than the certainty 

value. In an alternate implementation, we could choose to simply output these values as 

part of the statements and leave any specific usage to the user. An example, taken from 

the last statement in Table 4.4, would be class(A1, A2, A3, A4, A5, A6, A7, A8, A9, 

A10, A11, A12, A13, A14, A15, A16, N__, 8) :- A6 = 9, A10 = 7, A11 = 6, A13 = 0, 

N__ = 707. 
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Chapter 5 

 

 Experimental Results 

 

In this chapter, we present the results of comparisons and experiments done with 

TIMERS. First we will perform a comparison of TIMERS with other causality 

discoverers and see that they yield some incorrect results. Next we perform a series of 

experiments on TIMERS to show its behaviour on synthetic and real data. 

 In Section 5.1 we compare TIMERS to CaMML and TETRAD. Causality has often 

been applied to complex domain such as sociology, where the subject of what are the 

causes and what are the effects is open to debate, so claims of discovering causality are 

hard to verify. In this section we use the well-defined domain of the artificial robot as a 

sanity check for these methods, because we know all the rules governing it, and as a 

consequence we can analyse the results will little ambiguously. 

In Section 5.2 we provide the results of further experiments with TIMERS on the 

robot data, as well as a real world database containing weather observations and a 

moving robot database. We also provide the results of experiments on a spatial database 

that contains samples taken every half a metre from an oil well.  
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5.1 Comparison with Other Approaches to Causal Discovery 

The purpose of the experiments in this section is to measure the effectiveness of 

TimeSleuth, TETRAD, and CaMML in discovering rules when provided with sequential 

data. First we apply the methods to non-temporalised data, which has information for 

discovering atemporal rules. Then we apply the methods to data that is temporalised with 

various window sizes, which should allow them to discover temporal rules.  The results 

show how temporalisation affects the output of the methods. 

 

5.1.1 The Problem and the Desired Output 

We apply the three methods to example dataset from the URAL programme. This 

dataset is created by a robot that is performing a random walk in a two-dimensional 

space. Each record in this dataset contains x and y position values at any given time, the 

direction of movement at that time, and also a binary attribute indicating the presence or 

absence of food.  TETRAD restricts attributes to at most 8 values, so the size of the world 

was set to be 8×8, with x and y values ranging from 0 to 7. To ensure fairness to all 

methods, all results presented in this section are derived from a single run of 10,000 time 

steps in URAL where food existed at locations (0,6), (1,2), (3,5), (5,5), and (6,3). The 

location of food would not change during the run. These results are representative of 

many experiments we have performed with varying number of time steps and a variety of 

locations for food.  

To be able to better pass judgment on the results, Table 5.1 shows the desired output 

of TimeSleuth, TETRAD, and CaMML in each tool's notation.  Given our knowledge of 
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the domain, our expected result is provided under the column Domain Expert and the 

following columns give the desired output in the notation of the tools used. TimeSleuth’s 

output is represented by rules because rules are C4.5’s output. FoodXY() is an atemporal 

relation saying whether or not food is present at a given (x,y) location, while MoveX() and 

MoveY() are temporal relations describing the effects of moving along the x-axis and y-

axis, respectively. 

Table 5.1 The desired output for TimeSleuth, TETRAD, and CaMML 
Window 

Size 

Domain Expert TimeSleuth TETRAD CaMML 

f = FoodXY(x, y) if {( x= α) & (y = β)} then  
(f =δ) 

x → f, 

 y → f 

(x, y → f)  

 

1 No relation for a, x, y No rules (low accuracy) a, x, y (→ a), (→ x), 

 (→ y) 

fw = FoodXY(xw, yw) if {(xw = α) and (yw = β)} then  
(ft = δ) 

x → fw,,  

y → fw 

(xw, yw → fw) 

xw = MoveX(xw-1, atw1) if {(xw-1 = α) and (aw-1 = γ)} 
then (xw = δ) 

xt-1 → xw, 

 at-1→ xw 

(xw-1, aw-1 → 

 xw) 

yw = MoveY(yw-1, aw-1) if {(yw-1 = α) and  (aw-1 = γ)} 
then (yw = δ) 

yt-1 → yw, 

at-1→ yw 

(yw-1, aw-1 → 

 yw) 

 

 

 

w ≥ 2 

No cause for at No rules (low accuracy) at (→ aw) 

 

For any window size w ≥ 2, the result of a move depends only on the position and the 

move direction in the w-1 time step (time starts at 1 and ends at w in each record that is 

temporalised in the forward direction). We expect the atemporal relations that hold for w 

= 1 to also hold for w > 1 because atemporal relations do not depend on time. 

In Table 5.1, TETRAD's and CaMML's desired output are represented directly in 

their respective notations. TimeSleuth's desired output is given in template form, as 

generalised rules. The actual output has multiple rules, with one rule for each 

combination of the values for the attributes representing conditional attributes.  Also, the 

actual output does not contain keywords such as if, then, or and, and has specific values 

instead of the α, β, and δ parameters.  
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5.1.2 Results with a Window Size of 1 

 To test their ability to find atemporal relations, we ran TETRAD 4.3.3 [93], CaMML 

and TimeSleuth on non-temporalised data. We consider the rules x o→ f, y o→ f to be 

incorrect because they imply the wrong direction. We note that by design TETRAD 

cannot find rules of the form (x, y → f), because it only searches for relationships between 

two attributes at a time. 

TETRAD can be run with several options. If the existence of latent common causes is 

assumed, TETRAD uses the FCI algorithm, and otherwise if causal sufficiency is 

assumed, TETRAD uses the PC algorithm [71]. The PC algorithm has been proved to be 

correct if the Markov and Faithfulness assumptions hold in the data [71]. The results for 

TETRAD with the FCI algorithm are shown in Table 5.2.  

Table 5.2 Rules discovered by TETRAD’s FCI algorithm (w = 1) 

Significance Levels Correct Rules Incorrect Rules 

0.0  a x o→ f, y o→ f 

0.001, 0.01, 0.05, 0.1, 0.2 a y o−o f,  y o−o x, a o−o x 

 

 In Table 5.3 we provide TETRAD’s results with the PC algorithm. In a some cases 

PC’s results are less conclusive than FCI’s results. For example, y − f is undirected and 

could mean any of y → f, y o−o f, y o→ f, f → y, etc. TETRAD’s best results are obtained 

with the PC algorithm and a significance level of 0.0. 

Table 5.3 TETRAD’s rules with the PC algorithm (w =1) 

Significance Levels Correct Rules Incorrect Rules 

0.0 a, y → f, x → f  

0.001, 0.01, 0.05, 0.1, 0.2 a x − f , y − f, x − y 
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For the same data, CaMML gave the results shown in Table 5.4. CaMML found all 

the correct atemporal rules. In reality, x and y do not cause f in URAL, but without any 

domain knowledge, it is reasonable to interpret this relationship as a causal one, so we 

accept the rule (x, y → f) as correct. 

Table 5.4 CaMML's results with non-temporalised records (w = 1) 

Correct Rules Incorrect Rules 

(→ a), (→ x) , (→ y), (x, y → f)  

 

We ran TimeSleuth with the same data, with options set to try all attributes as the 

decision attribute.  The results are shown in Table 5.5. The first two entries for predicting 

the value of f show that c4.5rules eliminated unneeded condition attributes when creating 

rules. In general, if the value of x is sufficient to predict the outcome regardless of the 

value y, the generated rule will not include y and vice versa. We accept all the rules 

generated for predicting f as correct, because together they correctly predict the presence 

or absence of food. 

As a classifier, C4.5 creates rules regardless of whether or not they make semantic 

sense, but none the less the results were interesting. There is a strong association between 

f, x, and y, and this is exploited by TimeSleuth for predicting the value of these attributes. 

The value of a, however, is unrelated to any other observable attribute, and this is 

reflected in low accuracy value for the rules. The low accuracy rules are discarded 

because they fall below any threshold value of 35% or more, including 80%, 90%, 95%, 

99.5%, and 99.99% that correspond to TETRAD’s significance levels.  

 

 

 



114

Table 5.5 TimeSleuth's results with non-temporalised records (w = 1) 

Decision 

Attribute 

Condition 

Attribute(s) 

Number 

of Rules 

Correctness Training 

Accuracy 

x 3 

y 4 

 

f 

x, y 20 

 

Correct 

 

100% 

x y, f 4 Incorrect 19.9% 

y x, f 5 Incorrect 21.2% 

a x, y 7 Incorrect 26.4% 

 

In TIMERS, rulesets with low accuracy values are considered to imply the absence of 

a reliable relationship between the involved attributes. 

 

5.1.3 Results with Larger Window Sizes 

Window size 2: Temporalising using a window size of w = 2, produced records with 

8 attributes {x1, y1, f1, a1, x2, y2, f2, a2}. To test the discriminating powers of these 

methods, we included all eight attributes in the tests, including the ones that appear at the 

same time as the decision attribute. In the experiments reported in Section 5.2, we will 

only use the decision attribute at the current time.  

TETRAD, CaMML, and TimeSleuth were applied to determine whether they could 

discover the FoodXY() atemporal function and the MoveX() and MoveY() temporal 

functions. 

TETRAD's output with the FCI algorithm (assuming the existence of latent causes) is 

summarised in Table 5.6. TETRAD allows the user to specify any temporal order among 

the input attributes, and we provided the information that attributes from one time step 

have a temporal precedence from the attributes of the following time step. With  FCI, 

temporalising the records resulted in many more rules being discovered than with 

window size 1. Most of these rules are incorrect.  
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Table 5.6 TETRAD’s FCI algorithm with temporalised records (w = 2) 

Significance Levels Correct Rules Incorrect Rules 

0.0 a2 y1 o→  y2, f1, a1 →  y2, a1 o→  x2, x1 o→  x2, f2 

0.001, 0.01, 0.05, 0.1, 0.2 a2 y1 o→  f1, y1 o→  y2, a1 o→  x2, a1 o→  y2, x1 o→  

f1, x1 o→  x2, f2 

 

TETRAD’s output assuming no latent common causes (the PC algorithm) appears in 

Table 5.7. As can be seen, PC also discovered more incorrect rules after temporalisation. 

Table 5.7 TETRAD’s PC algorithm with temporalised records (w = 2) 

Significance Levels Correct Rules Incorrect Rules 

0.0 y1 → f1, y1 → y2, a1 → x2,  

a1 → y2, a2, x2 → f2  

 f1→ x2, f1 ↔ x2,  

x2 → x1 

0.001, 0.01, 0.05, 0.1 y1 → y2, a1 → x2, a1 → y2 ,  

a2, x2 → f2 

y1 − f1, y1 → x2,  f1 → x2,  

f1 → x2,  x2 → x1 

 

0.2 
y1 → y2, a1 → x2, a1 → y2, 

 x2 → f2, a2 

f1 → y1, f1 → x2, f1 → x1,  

x2 → x1  

 

The results of applying CaMML with a window size of 2 appear in Table 5.8. For 

CaMML, we were unable to discover any means of specifying a temporal order among 

the input attributes. It continued to discover the same relations as it had found with non-

temporalised records. These relations are correct, because the relations that existed in the 

previous case continue to exist in the temporalised data. However, CaMML failed to 

discover the relationships between the previous location and action, and the current 

location. The correct relationships might have been expressed as (x1, a1→ x2) and (y1, 

a1→ y2), but they are absent in the output. CaMML discovered the single rule (x1, y1, x2, 

y2 → a1), which represents the same information in an alternative format. However, this 

might be considered to be temporally invalid, because it refers to the values of variables 

in the future to predict the past. In fairness to CaMML, the temporal information was not 

available to it. 
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Table 5.8  CaMML's rules with temporalised records (w = 2) 

Correct Rules Incorrect rules 

(→ x1), (→ y1) , (x1, y1 → f1), 

(x2, y2 → f2) , (→ a2) 

(x1, y1, x2, y2 → a1), 

(→ x2), (→ y2)   

 

The results of applying TimeSleuth to the same data are given in Table 5.9. In our 

8×8 board, 4 possible actions and 8 distinct values exist for each of x1 and y1. In this 

example, the agent has explored the entire world, and TimeSleuth created 32 (8×4) rules 

for predicting the next value of each of x2 or y2. It correctly pruned y1 from the rules for 

x2, because the rules for moving along the x-axis are independent of the value of y. 

Similarly, it pruned x1 from the rules for y2.  

The rules for predicting f2 are the same as the rules given in Table 5.1 for predicting f 

in the atemporal case, which is correct, because the rules for food are not dependent on 

time. TimeSleuth was also tried on the a2 attribute, which is not caused by any of the 

observable attributes. We have not shown the results with x1, y1, f1, and a1 as decision 

attributes. Consistent with the results with non-temporalised data, those rules have low 

accuracy values. 
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Table 5.9 TimeSleuth's results with temporalised records (w = 2) 

Decision 

Attribute 

Condition 

Attribute(s) 

Number 

of Rules 

Correctness Training 

Accuracy 

x2 3 

y2 4 

 

f2 

x2, y2 20 

 

Correct 

 

100% 

x2 x1, a1 32 Correct 100% 

y2 y1, a1 32 Correct 100% 

x1, a1, y2 16 

x1, y1, a1, 18 

x1, y1, y2 6 

x1, x2, y2 7 

x1, y1, x2 4 

x1, y2 3 

x1, y1 2 

x1, a1 1 

 

 

 

 

a2 

 

a1, y2 1 

 

 

 

 

Incorrect 

 

 

 

 

 

29.8% 

 

Window Sizes Larger Than 2: TETRAD’s FCI and PC algorithms were tried with w = 

3. The results are shown in Table 5.10 for FCI and in Table 5.11 for PC.  

Table 5.10 TETRAD’s FCI algorithm with temporalised records (w = 3) 

Significance Levels Correct Rules Incorrect Rules 

0.0 a3 y1 o→ y2, f1, a1 o→ y2, a1 o→  x2, x1 o→  x2, f2,  

a2 o→  y3, a2 o→ x3, f3 o→  y3, x3 o→  a2 

0.001, 0.01, 0.05, 

0.1, 0.2 

a3 y1 o→  f1, y1 o→  y2, a1 o→  y2, a1 o→  x2, x1 o→  f1,  

x1 o→  x2, f2, a2 o−o x3, a2 o→  y3, f3 o→  y3 

 

Table 5.11 TETRAD’s PC algorithm with temporalised records (w = 3) 

Significance Levels Correct Rules Incorrect Rules 

0.0 y1 → y2, x1 → x2, y1 → f1, a1 → y2,  

a1 → x2, x1 → f1, a2 → x3, a2 → y3, a3 

f2,  y3 ↔ f3, f3 ↔ x3 

0.001 y1 → y2, a1 → y2, a1 → x2,  

x1 → x2, a2 → x3, a2 → y2, a3 

y1 − f1, y1 − x1, f1 − x1, f2 ,  

y3 ↔ f3, x3 ↔ f3 

0.01, 0.5, 0.1, 0.2 y1 → y2, a1 → y2, a1 → x2,  

x1 → x2, a2 → x3, a2 → y3, a3, x3 → f3 

y1 − f1, y1 − x1, f1 − x1, f2 , 

y3 ↔ f3,  

 

In all experiments performed with TETRAD, the PC algorithm clearly gave better 

results than the FCI algorithm, implying that in the test data the assumption of causal 
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sufficiency holds. PC’s results were generally better when the significance level was set 

to 0.0. 

TimeSleuth obtained good results with larger window sizes. The causal rules 

concerning xw and yw all have an accuracy value of 100%. As demonstrated in [33], C4.5 

effectively handles the bigger input records that are created by larger window sizes by 

pruning irrelevant attributes. More experiments with TimeSleuth on the robot database 

are given in Section 5.2. Table 5.12 summarises the results obtained with window sizes 

from 3 to 10. 

Table 5.12 Test results for larger window sizes 

Window Size Domain Expert TimeSleuth TETRAD CaMML 

FoodXY(xw, yw) if  {(xw = α) and (yw = β)} 
then (fw = δ). 

MoveX(xw-1, aw-1) if  {(xw-1 = α) and (aw-1 = γ)} 
then (xw = δ). 

 

 

3 ≤ w ≤ 10 

MoveY(yw-1, aw-1) if  {(yw-1 = α) and (aw-1 = γ)} 
then (yw = δ). 

Better 

results with 

the PC 

algorithm. 

Not tested 

because it 

cannot 

handle the 

input size 

 

 

5.1.4 Summary of Comparisons 

The results of our experiments are summarised in Table 5.13, where the number of 

correct and incorrect relations/rules discovered by each system, for a variety of window 

sizes, is given.  For TETRAD, we consider the PC results with a 0.0 significance level 

and for TimeSleuth we assumed a confidence threshold of 95%. 

Table 5.13 Summary of experimental results 

TETRAD CaMML TimeSleuth Window 

Size Correct Incorrect Correct Incorrect Correct Incorrect 

w = 1 3 0 4 0 27 0 

w = 2 6 3 5 3 91 0 

w = 3 9 3 N/A 91 0 
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TIMERS performs well on this problem. CaMML was not able to use any temporal 

information. Both TETRAD and CaMML found some wrong relations as the window 

size was increased.  

 

5.2. Evaluation of TIMERS on Synthetic and Real Data 

In the previous section we used temporalisation strictly in a forward direction, so we 

could perform comparisons with other software. In this section, we employ TIMERS’ 

more flexible treatment of time. We also assume that the domain expert can choose a 

decision attribute, so we concentrate on specific attributes instead of trying all of them..  

We first use two temporal datasets to test TIMERS’ ability in discovering casual and 

acausal rules. The first dataset is from URAL and the second dataset is from a weather 

station in Louisiana AgriClimatic Information System [88]. To show that TIMERS can 

be employed independently of the underlying rule discovery method, we employ both 

classification and regression to generate rules. 

Later in this section we discover rules from another real-world temporal dataset that 

contains observations regarding the detection of failure in a robot that grabs and moves 

objects. In the last set of experiments we show how TIMERS can be applied to a spatial 

dataset. 

 

5.2.1 Using Classification to Generate Rules 

The Artificial Robot 

We used 2500 records for training, and 500 for testing the rules (predictive accuracy). 

The decision attribute is set to be the current value of x, and the other three attributes (y, f, 
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and a) are set as the condition attributes. There is no relationship between the current 

value of x on one hand, and the current values of y, direction of the movement, or the 

presence of food on the other hand. So we predict that an instantaneous test (window size 

of 1) will give poor results. From our understanding of the domain we know that the 

current value of x depends on the previous value of x, and the previous direction of 

movement (the same holds for y). We expect the method to classify the relationship as a 

causal one. The acausal hypothesis says that you can tell where you were before if you 

know where you are now. This hypothesis is clearly wrong, as we could have ended at 

the current position from a different number of previous positions. Hence we do not 

expect to get good results with our acausality test. The results are shown in Table 5.14, 

where “T Accuracy” stands for training accuracy, and  “P Accuracy” stands for predictive 

accuracy. The “Position” column shows the index of the decision attribute within the 

temporalised record. 

Table 5.14 TIMERS' results with the robot data. Verdict is causal 

Window Position T Accuracy P Accuracy Type of test Actual rules 

1 1 19.7% 20.4% Instantaneous Instantaneous 

2 1 56.2 55.7% Acausal Acausal 

2 2 100% 100% Causal Causal 

3 1 57.6% 55.6% Acausal Acausal 

3 2 100% 100% Acausal Causal 

3 3 100% 100% Causal Causal 

4 1 58.4% 58.1% Acausal Acausal 

4 2 100% 100% Acausal Causal 

4 3 100% 100% Acausal Causal 

4 4 100% 100% Causal Causal 

5 1 58.4% 57.1% Acausal Acausal 

5 2 100% 100% Acausal Causal 

5 3 100% 100% Acausal Causal 

5 4 100% 100% Acausal Causal 

5 5 100% 100% Causal Causal 
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Considering the 100% accuracy values with a window size of 2 or bigger in the 

causal tests, TIMERS declares the relation to be causal. With any position bigger than 1, 

the previous record which contains the relevant information for an accurate prediction of 

current x value, is included in the temporalised data, and TIMERS discovers the correct 

temporal relation between the current value of x and the previous x and movement 

direction. In other words, even with an acausality test, the rules are all causal because 

they only contain attributes from the previous time step.   

An example rule would be: if {(xt = 1) AND (at = Right)} then (xt+1 = 2). The 

equivalent Prolog rule generated by TimeSleuth is: class(Y_t1, F_t1, originalDecision_t1, 

X_t1, 2) :- OriginalDecision_t1 = 3, X_t1 = 1. originalDecision is the default name given 

to the decision attribute in the input file (in this case it is the direction of movement) as 

opposed to the decision attribute chosen by the user (in this case we had chosen x). 3 is 

the code for moving to the Right. Y and F do not appear among the condition attributes, 

which means that their values are not important in this rule. The last argument in the 

prolog rule (2 in this case) is the decision attribute's next value. This rule indicates that no 

matter what the previous y location and the presence or absence of food, to go to the x 

location 2 in the next time step, you can be in x location 1 and move to the Right. As 

explained in Chapter 4, a series of such rules can be combined to automatically come up 

with a plan for moving from a starting location to a destination. The whole Prolog file is 

presented in Appendix 1. 

We now create a dependence diagram for the robot data.  

Step 1: building the diagram. The diagram is as shown in Figure 4.14. 
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Step 2: Pruning. We remove all links with strength less than or equal to 80%, and 

remove all nodes with strength less than 50%. As it turns out, no nodes are removed. 

Results are shown in Figure 5.1 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 The pruned dependence diagram for the robot data 

 

We can observe the influence of the attributes on each other in this dependence 

diagram, and thus have a pictorial summary of the rules. If there is a link from a node to 

itself, then we know that the reference means that the value of the corresponding attribute 

at a different time (past of future) is used for predicting the present value. This implies 

that we see a node pointing to itself only when the window size is bigger than 1.  

Compared to the experiments of the previous chapter, it seems that the rules for 

predicting the value of f have changed (x and y are not pointing to f as one would expect 

from the results of Section 5.1). The reason is that in the experiments of this section 

TIMERS is not including the x and y values that are observed at the same time as f. To re-

create the atemporal rules for f in Section 5.1, one should perform the test with a widow 

size of 1. 
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We do not claim that a dependence diagram necessarily implies the existence of 

causality, because the rules that are used as the basis for the diagram may have come 

from an instantaneous or acausal investigation. Any interpretation of causal relationships 

derived from a dependence diagram is left to the domain expert. 

The weather data 

The subject of experiments in this subsection is a real-world dataset from weather 

observations in Louisiana, and hence interpreting the dependencies and relationships is 

harder than the robot dataset. It contains observations of 8 environmental attributes 

gathered hourly from 22/7/2001 to 6/8/2001. There are 343 training records, each with 

the air temperature, the soil temperature, humidity, wind speed and direction and solar 

radiation, gathered hourly. 38 other records were used for testing the rules and generating 

predictive accuracy values. We have set the soil temperature to be the decision attribute. 

The results obtained are shown in Table 5.15. 

Table 5.15 TIMERS’ results the weather data. Verdict is acausal 

Window Position T Accuracy P Accuracy Type of test Actual rules 

1 1 27.7% 23.7% Instantaneous Instantaneous 

2 1 75.1% 59.5% Acausal Acausal 

2 2 82.7%   67.6% Causal Causal 

3 1 85.3% 75.0% Acausal Acausal 

3 2 82.4% 72.7% Acausal Acausal 

3 3 86.8% 77.8% Causal Causal 

4 1 85.3% 74.3% Acausal Acausal 

4 2 85.9% 74.3% Acausal Acausal 

4 3 83.2% 74.3% Acausal Acausal 

4 4 84.4% 71.4% Causal Causal 

5 1 85.0% 73.5% Acausal Acausal 

5 2 87.0% 76.5% Acausal Acausal 

5 3 85.0% 76.5% Acausal Acausal 

5 4 83.8% 76.5% Acausal Acausal 

5 5 86.7% 73.5% Causal Causal 
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Because the accuracy values in the two directions of time are close, TIMERS declares 

the relationship between the soil temperature and other attributes to be acausal. The 

relationship is not instantaneous, as observed by relatively poor results with a window 

size of 1 (instantaneous test). The accuracy goes up after temporalisation, implying that 

there is a temporal relationship at work.  

We now create a dependence diagram for the weather data created from a causal 

investigation with window size 2. We use a minimum strength value of 40% for pruning 

the edges, and a minimum strength value of 50% for pruning the nodes. 

Step 1. Building the diagram. To save space and avoid displaying many links, we 

show the diagram after pruning the links, so only links with strength values more than 

40% are shown. Figure 5.2 shows the results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Dependence diagram for the weather data 
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Step 2. Remove nodes with strength values less than 50%. Results are in Figure 5.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 The pruned dependence diagram for the weather data 

 

 

In a dependence diagram, the influence of a node is limited to the nodes to which it is 

pointing. Nodes that are connected together indirectly, such as Solar Radiation and Soil 

Temperature in the path Solar-Radiation → Air-Temperature → Soil-Temperature, do not 

necessary guaranty the presence of a direct link such as Solar-Radiation → Soil-

Temperature (no transitivity). In our tests, however, when we removed the intermediate 

nodes, we would usually see the emergence of a link between the nodes, as illustrated in 

Figure 5.4, where the node Air Temperature is removed from the input data. A new link 

Solar-Radiation → Soil-Temperature emerges. However this result is not to be 

generalised. 
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Figure 5.4 Dependence diagram with Air Temperature removed from the data 

 

5.2.2 Using Regression to Generate Rules 

In this subsection we compare the effectiveness of our TIMERS algorithm when 

using a regression programme called CART. When applicable, we have used both 

CART's regression, as well as its classification abilities. We show that the results are 

consistent with those obtained from classification with C4.5.  

In the following tables, the values under "classification" represent the percentage of 

correct classifications done on training data (Training accuracy) and testing data 

(Predictive accuracy), while the values for "regression" represent the error values (mean 

square error). So higher values for classification are better, while lower values for 

regression are desired.  

Unlike C4.5, CART has not been integrated into TimeSleuth, so to perform the 

following tests we prepared CART’s input files manually by performing temporalisation 

and then removing the current-time condition attributes. To use CART as the classifier 
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with TIMERS, a few points have to be addressed. For one, CART’s main output form is a 

decision tree, which does not cause any problem when evaluating the output, because the 

accuracy of the tree can be used instead of accuracy of rule sets. As to the complexity of 

the output, one could use the number of nodes in the tree as the measure of complexity. 

The other point to consider when using CART is how to measure the quality 

intervals. As we have seen this was easy to do with accuracy values because they lie 

between 0% and 100%, while when performing regression, CART’s error values start 

from 0.0 and increase without bounds. Hence a notion of overlap is harder to define in 

this case. For this reason we can refrain from constructing an interval, and simply 

compare the error values with a tolerance value as determined by the domain expert. 

The Artificial Robot 

Results of running regression on the artificial robot dataset are shown in Table 5.16.  

Table 5.16 TIMERS’ results with CART on the robot data. Verdict is Causal 
Regression Classification Win Pos 

T Error P Error T Accuracy P Accuracy 

Type of test Actual rules 

1 1 1.822 1.402 23.1% 26.5% Instantaneous Instantaneous 

2 1 0.657 0.672 55.3% 53.3% Acausal Acausal 

2 2 0.0 0.0 100% 100% Causal Causal 

3 1 0.657 0.673 55.3% 53.2% Acausal Acausal 

3 2 0.0 0.0 100% 100% Acausal Acausal 

3 3 0.0 0.0 100% 100% Causal Causal 

4 1 0.657 0.675 55.3% 52.9% Acausal Acausal 

4 2 0.0 0.0 100% 100% Acausal Acausal 

4 3 0.0 0.0 100% 100% Acausal Acausal 

4 4 0.0 0.0 100% 100% Causal Causal 

5 1 0.657 0.675 55.7% 52.7% Acausal Acausal 

5 2 0.0 0.0 100% 100% Acausal Acausal 

5 3 0.0 0.0 100% 100% Acausal Acausal 

5 4 0.0 0.0 100% 100% Acausal Acausal 

5 5 0.0 0.0 100% 100% Causal Causal 

 

 

As shown in Table 5.16, CART and C4.5 behave similarly when provided with the 

same data. The conclusion is the same in both cases: value of x is in a causal relation with 
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other attributes, because a causality test provides better results than either the 

instantaneous or acausality tests. The trend of having 100% accuracy for the tests 

continued with window sizes higher than 5. For the decision trees, the conclusion is that 

the system is causal, because the causal trees were smaller than the acausal ones, hence 

here the complexity measure works as a tie-breaker. 

The weather data 

As with the previous dataset the main aim is to compare CART’s and C4.5's results 

so as to evaluate TIMERS' consistency in giving a verdict when using different rule/tree 

discovering programmes. We have set the soil temperature to be the decision attribute. 

The results are shown in Table 5.17. 

Table 5.17 TIMERS’ results with CART on Louisiana weather data 

Window Position T Error P Error 

1 1 4.111 3.359 

2 1 385.883 1173.173 

2 2 0.562 0.716 

3 1 2.055 2.193 

3 2 0.463 0.648 

3 3 0.653 0.669 

4 1 4.127 5.104 

4 2 0.456 0.656 

4 3 0.463 0.615 

4 4 0.472 0.484 

5 1 2.051 2.226 

5 2 0.463 0.680 

5 3 0.487 0.654 

5 4 0.454 0.675 

5 5 0.626 1.442 

 

Because Soil Temperature is a continuous attribute and CART does not have an 

integrated mechanism for discretisation, we only performed regression. With different 

window size values, CART displayed more variation than C4.5, but the user is still able 



129

to make a decision as to the acausal nature of the relationship, because the results of the 

causal and acausal tests are close. 

 

5.2.3 Short-interval Temporal Data 

Previous temporal data concerned observations that were made one after the other, 

from the same system. It can happen that we deal with "bursts" of temporal data, where a 

certain number of observations are made at each time, and there is no relationship 

between the bursts. 

In this section we attend to the problem of failure detection in a robot that grabs, 

moves, and puts down objects. Upon encountering a failure, the force and torque values 

along the x, y, and z axis (a total of 6 values) are recorded 15 times at regular intervals. 

The whole process takes 315 ms. The results are then used to classify the type of error 

that occurred. We are interested only in the type of failure, not in any given event or 

value in the data. The event (failure) has happened before the 15 records are collected. 

For this reason we should temporalise the data using a window size of 15 and a position 

for the decision attribute that is either before, or after the observations. This 

temporalisation is possible because we assume that at the time index of the decision 

attribute, no other (condition) attribute is present. We add a dummy attribute to all time 

steps to represent the decision attribute. 

In [73], five strategies were used to create decision rules for solving the problem. The 

first one uses the 6 sensor values as they are, while in others these values are pre-

processed, and then used in the decision making process. The 5
th
 strategy combines all 

the data available to other strategies.  The observations have been divided into 5 learning 
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problem datasets. LP1 (failure in approach to grasp), LP2 (failure in transfer), LP3 

(failure in positioning a part after a transfer), LP4 (failures in approach to ungrasp), and 

LP5 (failure in motion with part). This kind of data cannot be processed by the standard 

sliding position TIMERS method, as it does not make sense to place the decision attribute 

(occurrence of failure) within the observed records. 

To obtain the results in Table 5.18, we used TIMERS to merge every 15 consecutive 

records into a single one, and used C4.5 to create decision trees. C4.5 was invoked with 

default parameters, with the exception of the values marked with a *, where the -g (use 

gain) option was used to generate the decision tree. In these cases the values obtained by 

default arguments appear in parenthesis. The five strategies covered in [73] are presented 

as S1 to S5.  

Table 5.18 Accuracy values for the robot learning problem 

TIMERS Problem S1 S2 S3 S4 S5 

Position = 15 Position = 1 

LP1 78% 80% 96% 85% 89% 97.7% 97.7% 

LP2 45% 57% 51% 68% 64% 95.7% 95.7% 

LP3 49% 75% 87% 85% 83% 85.1%*  (48.0) 97.9% 

LP4 65% 60% 95% 77% 83% 100%*   (94.9) 100%*  (99.1) 

LP5 69% 63% 72% 49% 77% 90.9%*  (89.0) 90.9%*  (82.3) 

 

There is a very close correspondence between the values obtained using different 

directions of time (positions of 1 or 15), which is to be expected, as the decision attribute 

is not a an attribute observed at any other time. We see that TIMERS gives either better 

or nearly the same accuracy values as the best of the 5 strategies in [73]. It is also more 

consistent compared to the other 5 strategies in terms of the quality of results. While 

TIMERS and S1 both use the original values of force and torque, TIMERS performs 

considerably better without requiring the user to come up with ways to process data, 
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which is a desirable quality because it frees the user from having to guess which pre-

processing method should be used in any particular case. 

 

 

5.2.4 Spatial Data 

We have mentioned that there are similarities between sequential data that come from 

temporal observations of a system, and sequential data from a spatial domain. For the 

experiments described in this section, we used data generated while drilling an oil well 

[86]. It includes observations about the characteristics of the soil being pierced, including 

the porosity of the soil (the capacity to hold oil) and different resistance values. The 

records were registered every 0.5 metre, between the depths of 7400 and 8907.5 metres. 

The decision attribute was set to be the porosity.  

The attributes are real-valued, so to produce results with a classifier such as C4.5, we 

discretised porosity to 20 different values. Regression is a more natural approach to this 

kind of data, and as we will see, regression works better than classification for this 

problem. TIMERS' results with classification are given in Table 5.19.  
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Table 5.19 TIMERS' classification results with C4.5 on the drilling data 

Window Position T Accuracy P Accuracy 

1 1 43.2% 50.5% 

2 1 42.6% 45.7% 

2 2 43.1% 47.8% 

3 1 38.1% 43.2% 

3 2 45.4% 46.6% 

3 3 40.7% 45.6% 

4 1 39.9% 45.0% 

4 2 45.7% 51.2% 

4 3 43.6% 47.6% 

4 4 40.5% 48.0% 

5 1 38.4% 39.2% 

5 2 42.6% 46.6% 

5 3 44.5% 48.4% 

5 4 45.6% 52.3% 

5 5 38.4% 45.8% 

 

We do not consider determining causality or acausality with this data. According to 

the results in Table 5.19, to predict the porosity at a given depth, the neighbouring values 

should be used. Throughout this Table the values are relatively close, and the results 

obtained with a window size of 1 are fairly close to those obtained with bigger window 

sizes, though over all the accuracy values are low because the attributes are numerical, 

and not suitable for a classification approach. We consider these results inconclusive, and 

suggest using regression instead. 

On this data CART was much more effective with regression than classification. 

Table 5.20 shows CART’s regression results. 
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Table 5.20 TIMERS’ results with CART’s regression on drilling-sample data 

Window Position T Error P Error 

1 1 0.017 0.030 

2 1 0.017 0.015 

2 2 0.024 0.017 

3 1 0.020 0.016 

3 2 0.012 0.010 

3 3 0.018 0.014 

4 1 0.018 0.015 

4 2 0.011 0.009 

4 3 0.012 0.010 

4 4 0.020 0.015 

5 1 0.021 0.016 

5 2 0.013 0.010 

5 3 0.012 0.009 

5 4 0.013 0.010 

5 5 0.019 0.014 

 

The error values are low and close to each other. Here we get better results when the 

decision attribute is in between some previous and next observations, implying that the 

value of porosity changes gradually. At the extreme ends, where the position is either 1 or 

equal to the window size, the error rate increase. The error rate is also higher for the case 

where window size is 1. This confirms that at any point, the current value of porosity is 

best predicted by observations made at both sides of that point. 
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Chapter 6 

 

Concluding Remarks 

 

In this thesis, we have presented the main characteristics and abilities of TIMERS and 

its implementation, TimeSleuth. In this chapter we discuss and summarise the main 

points of the approach. Section 6.1 discusses when this method can be applied for 

problem solving. Section 6.2 mentions the advantages and the disadvantages of this 

method, as they usually come together.  A summary of the thesis is presented in Section 

6.3. 

 

6.1 Applicability of the Approach 

For the examples of this section we assume that A and B denote the events of two 

attributes taking on certain values. The test for judging the causality of a set of rules 

depends on the quality of the rules in two temporal directions. For causality to manifest 

itself, the source of the observations should represent an irreversible relationship that 

exists in only the forward temporal direction. For example, B should often follow A, but 

A should only sometimes follow B. In such a case A would be considered a cause of B 
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because it can be reliably used to predict B using forward temporalisation, while B cannot 

be used to predict the presence of A with the same accuracy. The implication of this 

condition is that B should have more than one cause, so B would follow A more often 

than A following B. 

This restriction on the temporal direction of a relationship matches the common sense 

notion of causality. If A and B always follow each other, then one may tend to conclude 

that they are causing each other. Many researchers are not interested in circular causality, 

and assume that a hidden common cause is making both A and B happen. TIMERS also 

considers such a relationship to be acausal. 

TIMERS may make mistakes when A is the only cause of B, and A reliably causes B.  

In such a case we always observe A and then B in the normal direction of time (because A 

always causes B), and we always observe B and then A in the reverse direction of time 

(because B is only caused by A). In this case, TIMERS will declare the relationship as 

acausal. In the absence of any other knowledge, TIMERS’ verdict in this case is intuitive, 

because one can argue that it is possible to have a hidden common cause that is at work 

and is causing both A and B to appear, but at different times.  

From a more practical point of view, TIMERS works reliably when the effect always 

follows the cause within a specific amount of time (a time window), but the causes are 

more widely separated. In short, TIMERS declares a relationship between the decision 

attribute and the condition attributes to be causal when the relationship is not temporally 

circular and is not reversible in time. In practice, and in absence of domain knowledge 

that is not reflected in the input data, most real relations are better described as acausal. 
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Another aspect of when this method should be applied becomes evident when one 

needs to execute acausal rules. The question is how one can reference future values in the 

present? We must emphasise that using future values is just our test for distinguishing 

among causality and acausality of the relationship between the decision attribute and the 

condition attributes. As in the experiments in this thesis, when dealing with saved data, 

the future values are readily available in the next records. If we need to predict the 

decision attribute in real-time, then one could use rules generated by the causal method, 

even if they are less accurate than the acausal rules. In such cases the relationship would 

not be called causal.  

Another important point is that we have been using the quality of decision rules (or 

trees), versus other representations to choose the type of the relationship at work. That 

choice is because in a decision rule there is a distinguished decision attribute, whose time 

of observation is assumed to be the current time. This assumption would not be valid in 

an association rule, where one or more attributes’ values are associated with the values of 

other attributes. For example, (A = a) and (B = b) → (C = c) and (D = d) is an association 

rule, stating that if one observes certain values for attributes A and B, then one can also 

expect to see certain values for C and D. There is no single distinguished attribute that 

could serve as denoting the current time, so association rules and other knowledge 

representations with a similar feature cannot be used in TIMERS. 

 

6.2 The Main Limitations of TIMERS 

Our approach considers a set of input, namely sequential data, that is more restrictive 

than what is acceptable to software such as TETRAD and CaMML, so we do not attempt 
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to solve the causality problem in a broad sense. While we consider the inclusion of a 

temporal order between the possible causes and effects as intuitive, using a rule 

discoverer to select the relevant attributes for predicting the condition attribute is not 

always reliable. We have encountered cases where obviously wrong choices in condition 

attributes were made because with those particular data, better rules could be generated 

by using those attributes. Fortunately in most cases the quality of the rules that used 

irrelevant attributes were not very high, and we were able to discard the results.  

Another point is that while TIMERS’ running time is usually good (classification rule 

discoverers are usually fast), if the user is interested in analysing a number of attribute’s 

influence on each other, then the algorithm has to be run many times, and the results 

integrated in a dependence diagram. Bayesian methods usually do that by default. More 

generally, the user has to specify the values of six parameters for the TIEMRS method, 

and this requirement implies that the user must have a good understanding of 

characteristics of the input data. 

 TIMERS exploits the sequential nature of its input data to discover causality and 

acasuality, which creates a restriction on the types of input data that are appropriate for 

analysis with this approach. While causal Bayesian methods can be used on census type 

data, for example, where each record comes from a different source and may be collected 

at different times, the data suitable for TIMERS must obey a strict temporal order. 

Another characteristic of this method is that if the domain of the attributes can take on 

many values (the attributes are real-valued, for example), and there are not enough 

observations to sample all the values sufficiently, then the decision rules may be of poor 

quality, and no causal relationship may be detected. To remedy this problem, we suggest 
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that if an attribute takes on many different values compared with the number of input 

records, then the user should discretise that attribute to help in the process of rule 

discovery. 

A potential pitfall should be mentioned. Suppose a person chooses a reversible 

operator, and applies it to the values of a number of attributes. Would this system be 

labelled as acausal? If the values produced after each application of the function are never 

repeated, then our method cannot discover reliable classification rules, and the method 

refrains from giving a verdict. If, however, the results are cyclic, then the method may 

well find relationships in both directions, and the verdict will be acausal. However, cyclic 

observations can imply cyclic causes and effects, which we consider to be of no interest 

in this work.  

To summarise: (1) TIMERS is scalable in the number of attributes, but may need 

several runs in case the user is interested in predicting many attributes. (2) It is intuitive 

in that it strictly requires time to pass between causes and effects. (3) The rule discoverer 

may not choose the relevant attributes, and frequently, choosing irrelevant attributes 

results in rules with poor quality. (4) TIMERS usually performs much better than other 

methods when given the suitable sequential data, but the restrictions on the suitable type 

of data limit its applicability. (5) The domain expert may need to observe the data and 

perform operations such as discretisation to obtain more reliable results. 

6.3 Summary 

We have presented a method to discover and distinguish between instantaneous, 

causal, and acausal relationships between a decision attribute and a set of condition 
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attributes. The proposed method is based on the assumption that the passage of time and 

causality are closely related.  

TIMERS tests to see whether referring to condition attribute values that appear at 

different time steps increases the accuracy of the prediction of a decision attribute’s 

value. If not, then the relationship is instantaneous. If including a time difference between 

the attribute observations results in better prediction, then a distinction is made as to 

whether the relationship is causal (previous values of the condition attributes determines 

the present value of the decision attribute) or acausal (succeeding values determines the 

present value of the decision attribute). Each test is performed after an appropriate type of 

temporalisation. We used the accuracy values of the rules as an indication of the 

appropriateness of the temporalisation method, and hence the type of the relationship. In 

general any other measurement can be used. This method works with different underlying 

rule-discovery programs, as evidenced by employing two very different programmes, 

C4.5 and CART. 

The resulting rules show us which attributes are important in predicting the value of 

the decision attribute. They also show how the relationship is formed. For example, in the 

Louisiana weather data, the soil temperature an hour before the current time had the most 

importance in determining the soil temperature [38]. 

The rule sets are useful by themselves, but to help the user better understand them, 

dependence diagrams graphically show which attributes take part in the process of 

classification. The strength of the relations among the condition attributes and the 

decision attribute is also displayed. The user thus sees how the attributes influence each 

other. 
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The TIMERES method can be applied to any one-dimensional data. The similarities 

between a spatial line and the arrow of time make this generalisation intuitive. When 

there is no significance between moving backwards or forwards in the data, as non-

temporal, on-dimensional data, there is no need to distinguish the resulting rules as causal 

or acausal.  

The TimeSleuth package includes executables and source code in Java, as well as 

help and example files. It can be downloaded freely from 

http://www.cs.uregina.ca/~karimi/doanloads.html. 
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Appendix A 
 

 

TimeSleuth’s Output in Prolog for the Robot’s x 

Movements 
 

 
 

:- op(800, xfx, ule). 

:- op(800, xfx, ug). 

 

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 0) :- OriginalDecision_t1 = 2, X_t1 = 0. 

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 0) :- OriginalDecision_t1 = 0, X_t1 = 0. 

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 0) :- OriginalDecision_t1 = 2, X_t1 = 1. 

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 0) :- OriginalDecision_t1 = 1, X_t1 = 0. 

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 1) :- OriginalDecision_t1 = 0, X_t1 = 1. 

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 1) :- OriginalDecision_t1 = 3, X_t1 = 0. 

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 1) :- OriginalDecision_t1 = 1, X_t1 = 1. 

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 1) :- OriginalDecision_t1 = 2, X_t1 = 2. 

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 2) :- OriginalDecision_t1 = 0, X_t1 = 2. 

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 2) :- OriginalDecision_t1 = 3, X_t1 = 1. 

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 2) :- OriginalDecision_t1 = 2, X_t1 = 3. 

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 2) :- OriginalDecision_t1 = 1, X_t1 = 2. 

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 3) :- OriginalDecision_t1 = 0, X_t1 = 3. 

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 3) :- OriginalDecision_t1 = 3, X_t1 = 2. 

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 3) :- OriginalDecision_t1 = 2, X_t1 = 4. 

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 3) :- OriginalDecision_t1 = 1, X_t1 = 3. 

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 4) :- OriginalDecision_t1 = 3, X_t1 = 3. 

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 4) :- OriginalDecision_t1 = 0, X_t1 = 4. 

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 4) :- OriginalDecision_t1 = 1, X_t1 = 4. 

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 4) :- OriginalDecision_t1 = 2, X_t1 = 5. 

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 5) :- OriginalDecision_t1 = 1, X_t1 = 5. 

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 5) :- OriginalDecision_t1 = 0, X_t1 = 5. 

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 5) :- OriginalDecision_t1 = 2, X_t1 = 6. 

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 5) :- OriginalDecision_t1 = 3, X_t1 = 4. 

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 6) :- OriginalDecision_t1 = 1, X_t1 = 6. 

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 6) :- OriginalDecision_t1 = 0, X_t1 = 6. 

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 6) :- OriginalDecision_t1 = 3, X_t1 = 5. 

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 6) :- OriginalDecision_t1 = 2, X_t1 = 7. 

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 7) :- OriginalDecision_t1 = 1, X_t1 = 7. 

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 7) :- OriginalDecision_t1 = 3, X_t1 = 6. 
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class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 7) :- OriginalDecision_t1 = 3, X_t1 = 7. 

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 7) :- OriginalDecision_t1 = 0, X_t1 = 7. 

 

class(Y_t1, F_t1, OriginalDecision_t1, X_t1, 0). 

 

 

/* ule unifies the left hand side or performs =< */ 

A ule B :- var(A), A = B. 

A ule B :- A =< B. 

 

/* ug unifies the left hand side or performs > */ 

A ug B :- var(A), A is B + 1. 

A ug B :- A > B. 

 

/* umember unifies a variable, or performs member() */ 

umember(A, B) :- var(A), [X|_] = B, A = X. 

umember(A, B) :- member(A, B). 

 

member(A, [A|_]). 

member(A, [_|B]) :- member(A, B). 

 

 

 

 


