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Abstract. In this paper we propose a new algorithm, called 1DIMERS (One 
Dimensional Investigation Method for Enregistered Record Sequences), to mine 
rules in any data of sequential nature, temporal or spatial. We assume that each 
record in the sequence is at the same temporal or spatial distance from others, and 
we do not constrain the rules to follow any monotonic direction, meaning that the 
rules can involve condition attributes in previous and next records relative to the 
decision attribute. Removing the conceptual temporal limitations makes 1DIMERS a 
generalised form of TIMERS (Temporal Investigation Method for Enregistered 
Record Sequences). TIMERS merges consequent records together, and then finds 
causal or acausal relationships among the variables in the merged records. The kind 
of rules discovered by TIMERS has also been called sequential rules. In general the 
passage of time is limited to one direction, which has been used in our previous 
work to distinguish between causality and acausality. Since in principle it is possible 
to move back and forth along a sequence, with general sequential data we can no 
longer intuitively speak of causality and acausality based on a direction. As a result, 
in 1DIMERS we substitute the terms "causality" and "acausality" with "forward-
predictive" and "backward-predictive," respectively. 1DIMERS and TIMERS may 
each be applicable to a different problem depending on the user's choice, and we 
give examples of each program's applicability. In previous work we have been using 
C4.5 as the classifier for creating temporal rules. Here we employ CART as well, 
which has the ability to regress as well as classify, and show that the results are 
independent of the underlying rule discovery program. 

1. Introduction 

Given a sequence of records, the problem we are considering is finding rules for 
predicting the value of a decision attribute that appears in each record. The traditional 
approach is to look for a relationship among the decision attribute and other attributes 
within the same record. One example rule would be [If(a = 6) then (decision = false)]. 
This method may not produce good results if there is an inter-record relationship among 
the attributes. Bounded by temporal constraints, in such a case we usually expect only the 
previous records to affect the current decision attribute, but here we investigate the 
possibility that the decision attribute's value is determined by attributes not only in 
previous records, but in next records, or both previous and next records. One example rule 
in this context would be: [If{(acurrent-1 = 2) AND (bcurrent+1 = 2)} then (decisioncurrent = false)]. 
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The attributes are now qualified with their position relative to the position of the decision 
attribute. In this example, "current-1" could be read as "previous," and "current+1" could 
be read as "next." 

Relying on data records that appear one after the other in a sequence from a single 
source (so they are related), sets our approach apart from methods such as [16] than do not 
consider any ordering among the input records. In this paper we use the term "one-
dimensional" instead of "sequential" to avoid confusion with common terminology. 
Though the data we deal with is sequential in nature, it need not obey any temporal order. 
Also, the attributes in each record in the sequence can represent any number of 
dimensions, temporal or spatial. "One-dimensional" here refers to the fact that there is a 
single temporal or spatial ordering among the records. Also, a sequence implies an 
unbreakable order, while in this paper we present rules that go back or forth (or both) in 
the sequence to predict the value of a decision attribute. This usage may not be suitable 
for real-time execution of temporal rules (we can't give a verdict until sometime in the 
future). We expect them to be of value in cases where predictive power is of more 
importance, or we are processing stored temporal data where at any given instant the 
future and past are available. Alternatively we may be processing spatial data, where 
future and past are simply substituted by notions of nearby locations (neighbourhood), and 
considered available. Lifting the restriction of following an inherent order in rules opens 
the door to new methods of analysing data. Other than that, there are hints that in spite of 
the intuitive appeal of finding patterns and rules in temporal sequences of data such as 
time series in a fixed temporal direction, in some cases the results may not be useful [6]. 

Sequential data and sequential rules have been studied before [1, 4, 20]. For example, 
in [4] the authors provide a genetic algorithm solution to the problem of detecting rules 
that manoeuvre a plane that is being chased by a missile in a two dimensional space. 
Discrete attributes such as speed, direction of the missile, turning rate of the plane, etc. are 
measured during 20 time steps. It is assumed that after 20 steps the missile will stop the 
chase. The rules discovered in that paper form part of a plan, and the genetic algorithm 
changes parts of the plan to make them better suitable to solving the problem. Since the 
aim of the plans is to prevent a hit, the system is developed to produce rules that come up 
with evasive actions. The rules are then used in a simulator to measure their effectiveness. 
Time is obviously the sequencing factor in this example. In this paper we provide one 
example of sequential data that resembles this application in the sense that it consists of 
15 measurements made after a failure is detected in a robot. The observations are then 
used to classify failure types. However in general we are interested in predicting the value 
of an attribute that is included in each record. "Being hit," or "failure" does not appear in 
any of the records, while an attribute such as soil temperature can be measured at regular 
intervals along with other related variables. Other examples in this paper address the 
problem of predicting the value of such an attribute. 

The remainder of the paper is organised as follows. Section 2 provides background for 
our work and also presents intuitive examples of the concepts used in the paper. Section 3 
formally presents the 1DIMERS (One Dimensional Investigation Method for Enregistered 
Record Sequences) algorithm, which is a generalised version of TIMERS (Temporal 
Investigation Method for Enregistered Record Sequences). In Section 4 we present the 
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results of experiments with TIMERS, showing its effectiveness in solving temporal 
problems. The results of running TIMERS on a Robot learning problem, involving fixed 
number of relevant records (w = n = 15), are presented. It is a classification problem, with 
discrete values for the decision attribute.  Other experiments in Section 4 show that 
TIMERS is effective for solving regression problems, where the decision attribute is 
continuous, and provide the results of running CART on two datasets. C4.5's results are 
provided for comparison purposes. 1DIMERS overlaps with TIMERS in its method, and 
for comparison's sake its results are provided in each case after trying TIMERS. Section 5 
looks at another application domain that closely resembles the temporal domain, and that 
is spatial sequential data, and shows that the same techniques are effective there. TIMERS 
and 1DIMERS' results are presented and compared. Section 6 concludes the paper. 

2. Background 

Our previous work focuses on discovering temporal rules [7, 8] that allow us to predict 
what happens next, given previous observations. A temporal rule is a rule that involves 
time, i.e. the condition attributes appear at different times than the decision attribute. We 
divide temporal rules into two possible categories, causal, and acausal. A causal relation 
is one that involves attributes in the past affecting the decision attribute in the future [19]. 
The past affecting the future is the normal direction of time, and provides our definition of 
causality with an intuitive sense. We also consider the case where the future observations 
affect the past. We consider future affecting the past as a sign of acausality [15], or 
temporal co-occurrence. In an acausal relationship, the attributes just happen to be 
observed together over time, while none is causing the other. In this case there may be a 
hidden cause that has escaped our observation. Other than causality and acausality, the 
third possibility is that the relationship between the condition attributes and the decision 
attribute is instantaneous, meaning that value of the decision attribute is best determined 
by the condition attributes at the same time. 

We proposed the TIMERS method to detect a causal or acausal relation among 
temporal sequences of data [11, 13, 14]. TIMERS provides a set of tests and guidelines, 
for judging the nature of a relationship. It is partly performed by software, and partly by 
the domain expert who is analysing the data. Following this algorithm, we generate 
classification rules from the data, using an operation called flattening. Flattening merges 
consecutive records in the normal, forward, direction of time (for the causality test) or the 
backward direction of time (for the acausality test). The number of records merged is 
determined by a time window w, and represents our guess as to how many records may be 
involved in an inter-record relationship. The quality of the rules, determined by their 
training or predictive accuracy, allows us to judge the data as containing a causal or 
acausal relation. TIMERS performs three tests: One without flattening, to test the 
instantaneous hypothesis, and two others to determine the temporal characteristics of the 
data. The order to consider goes from instantaneous, to acausal, to causal. So if the results 
of an instantaneous test is about the same or better than the other two, then we declare the 
relationship among the decision and condition attributes to be instantaneous. Otherwise if 
the results of the acausality test is about the same, or better than the causality test, then we 
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declare the relationship as acausal. Otherwise the relationship is causal. This order implies 
that when dealing with temporal relationships, the tendency is to declare it as acausal. 
More explanation is provided in [13], where an algorithm for flattening data in both 
forward and backward directions is provided.  

In a sequential spatial dataset it is reasonable to assume that there may be connections 
between records at the neighbouring positions, before and after the current record. In this 
paper we introduce the sliding position flattening method which includes forward and 
backward flattening as special cases. The principle behind the sliding position method is 
that both previous and next records can be influential in determining the current value of 
the decision attribute. In a temporal domain this means considering both past and future 
observations. With any fixed window size w, the new flattening algorithm first places the 
current decision attribute at position one, and uses the next w-1 records to predict its 
value. This corresponds to a backward flattening in TIMERS, where future values are 
used to predict the past.  Then the current attribute is set at position 2, and the previous 
record (position one) and the next w-2 records are used for prediction. This case has no 
correspondence in our previous algorithm in [13]. This movement of the current position 
continues and at the end it is set to w, and the previous w-1 records are used for prediction. 
This corresponds to forward flattening in TIMERS. 

As an example consider four temporally consecutive records, each with four fields: <1, 
2, 4, true>, <2, 3, 5, false>, <6, 7, 8, true>, <5, 2, 3, true>. Suppose we are interested in 
predicting the value of the last (Boolean) variable. Using a window of size 3, we can 
merge them as in Table 1. The decision attribute is indicated in bold characters. When it 
comes to the record involving the decision attribute, we do not consider any condition 
attributes in the same record as the decision [13]. The Record.value notation in Table 1 
means that we are only including the decision attribute. For example, <R1, R2, R3.false> 
would contain <1, 2, 4, true, 2, 3, 5, true, false>, where false is the decision attribute in R3. 
This is to make sure that minimum amount of data is shared between the original record 
and the flattened record. 

 
Instantaneous. w = 1  
(original data) 

Forward (Causality).  
w = 3 

Backward (Acausality).  
w = 3 

Sliding position.  
w = 3 

R1 = <1, 2, 4, true> <R1, R2, R3.false> <R3, R2, R1.true> <R2, R3, R1.true> 
R2 = <2, 3, 5, true> <R2, R3, R4.true> <R4, R3, R2.true> <R1, R3, R2.true> 
R3 = <6, 7, 8, false>   <R1, R2, R3.false> 
R4 = <5, 2, 3, true>   <R3,  R4, R2.true> 
   <R2, R4, R3.false> 
   <R2, R3, R4.true> 

Table 1. Results of flattening using the forward, backward, and sliding position methods 

Normal flattening (vs. sliding position flattening) with a window size of w reduces the 
number of records by w-1. It is possible that not all the data in a dataset follow each other 
temporally, but only every n records. For example, every two records were generated one 
after the other, but there is no relationship between the first record and the third record, or 
any other record. In this case we consider the window size w to be the same as n, and 
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perform flattening so that every consecutive n records are merged into one, and thus the 
number of flattened records is divided by n. Sliding position flattening increases the 
number of records. 

TIMERS and 1DIMERS perform a series of pre-processing operations, notably 
flattening, then provide the processed data to another software to generate rules or trees 
and evaluate them. A post-processing phase can then follow, in which the data are 
presented to the user in a sequentially meaningful way. We have tried C4.5 [17] before, 
and because of its availability of source code, have been able to integrate it into our 
TimeSleuth software [9, 12]. TimeSleuth performs all processing before and after running 
C4.5 and hence partially implements both the TIMERS and 1DIMERS algorithms. 
Results of comparing TimeSleuth with other causality miners appear in [14]. Being a 
classifier, to apply data with continuous variables to C4.5, one has to perform 
discretisation on the decision attribute, which is not always reasonable with continuous 
data. In this paper we use another package called CART [2] which can classify as well as 
perform regression. We evaluate our method with CART as the underlying rule-
discoverer, and we show that it performs with little basic variation with different rule-
discovery programs. 

To use CART we had to perform many of the pre- and post-processing operations "by 
hand," i.e., using tools that were not integrated into CART. We performed flattening with 
TimeSleuth, and then deleted the current-time attributes using Mcrosoft Excel. The results 
for CART were not presented in a temporally valid way since CART, like most other data 
mining and machine learning algorithms, does not consider any order among its input 
records. So in the output a variable from the future could precede a variable from the past, 
for example.  

3. The 1DIMERS Algorithm 

Modern physics has established time and space as a unity, where one is inconceivable 
without the other. However, time remains an anomaly because unlike the spatial 
dimensions, it seems that one cannot move back in time, although experiments have 
shown that at the particle level, this is in fact possible [5]. Discovering temporal 
associations that predict the future, based on past observations, is possible, and one can 
conceptually use the same idea for one-dimensional space as well. Our previous work has 
used the distinction between moving back and forth in time as the basis of distinguishing 
causality on one side, and acausality (or temporal co-occurrence) on the other. Since we 
do not consider an explicit representation of time as necessary (time is implicitly present 
in the order of the records), a measure such as length can be substituted for time.  

Consider the problem of drilling a well. The well can be regarded as a one-dimensional 
entity. As the drill is making its way through the ground, new points are explored and 
registered. When we stop, we have a series of records that follow each other along the 
line. While it seems that the data was produced in a certain temporal order, one could 
argue that if the drilling were started from the opposite side, then we would be 
encountering the points from the reverse direction of time. It makes perfect sense to 
analyse the drilling data in any direction of time, with the results being valid in both cases. 
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Of course now it is not possible to talk about cause and effect because what happens to 
precede something in one direction, will be following it in the opposite direction. 

1DIMERS is an evolution of TIMERS. It changes the terminology from a temporal 
domain to a spatial domain and provides a more general flattening method, as intuitively 
described in Section 2. In 1DIMERS an instantaneous rule becomes a punctual rule 
(happens on a point instead of at an instant). A causal rule becomes a forward-predictive 
rule.  An acausal rule becomes a backward-predicitve rule. The intuitive distinction of 
causal vs. acausal rules does not exist here. "Forward" and "backward" in 1DIMERS 
simply refer to the original direction of the data. The lack of distinction between the two 
possible directions of movement on a line side steps some conceptual problems and 
debates about causality [3]. In 1DIMERS two new categories are added to one-
dimensional rules. The first one is called "linearly extended." A relation is called linearly 
extended when it is not punctual, and there is no strong evidence that either direction 
(forward or backward) result in a better predictive ability. The second new category is 
called bidirectional predictive and applies to cases where both directions result in similar 
results. In TIMERS such cases would be labelled acausal in a temporal domain because. 
The bias towards acausality in TIMERS is because causality is a strong assumption about 
any relation. In the general one-dimensional domain, where the restrictions and 
implications of time do not hold, we can employ a more varied terminology.  The sliding 
position flattening operator is presented in Algorithm 1. 
 

For (i  =  0;  i ≤  |D| - w; i++) 
{ 
          flattenedRecord = <> 
          for(j  =  1; j <  pos, j++)                  // previous records 
                flattenedRecord += Di+j 
          for(j = pos + 1; j ≤ w, j++)              // next records 
                 flattenedRecord += DI+j 
           flattenedRecord += Field(d, DI+pos)      // the decision attribute 
          output(flattendRecord) 
} 

Algorithm 1. The Sliding position flattening method 

Formally, the flattening operator F(w, pos, D, d) takes as input a window size w, The 
position of the decision attribute within the window pos, the input records D, and the 
decision attribute d, and outputs flattened records according to Figure 1. Di returns the ith 
record in the input D. Field() returns a single field in a record, as specified by its first 
variable. The += operator stands for concatenating the left hand side with the right hand 
side, with the results going to the right hand side variable. <> denotes an empty record. 
This flattening algorithm is simpler than the one presented in [13]. The 1DIMERS 
algorithm is presented in Figure 2 below. F() is the flattening operator as defined in 
Algorithm 1.  
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Input: A sequence of sequentially ordered data records D, minimum and maximum flattening 
window sizes α and β, where α ≤ β, a minimum accuracy threshold Acth, tolerance values εi, and a 
decision attribute d. The attribute d can be set to any of the observable attributes in the system, or 
the algorithm can be tried on all attributes in turn. 
Output: A verdict as to whether the relation among the decision attribute and the condition 
attributes is punctual, forward-predictive, backward-predictive, bidirectional predictive, or 
linearly extended. 
RuleGenerator() is a function that receives input records, generates decision trees, rules, or any 
other representation for predicting the decision attribute, and returns the training or predictive 
accuracy of the results. 

 
1DIMERS(D, α , β, Acth , ε, d) 
acp = RuleGenerator(D, d);  // punctual accuracy. window size = 1 
for (w = α  to β) 
         for(pos = 1 to w) 
               acw,pos = RuleGenerator(F(w, pos, D, d), d)  
         end for  
end for 
 
acb = max(acα,1, …, acβ,1)   // The best value with the decision attribute in the past (backward) 
acf = max(acα,α, …, acβ,β)  // The best value with the decision attribute in the future (forward) 
acl = max(acα,θ, …, acβ,θ),  ∀ w, α ≤ w ≤ β, then 1 < θ  < w  // Best value in-between 
 
// Maybe there is not enough related information, or the variables are random 
if (Acth >ε1 max(acp, acl, acf, acf) then discard results and stop.  
 
verdict = "for attribute " + d + ", " 
 
if (acp ≥ε2 max(acl, acf, acb) then verdict += "the relation is punctual" 
else if(acl >ε3 max(acf, acb)) then verdict += "the relation is linearly extended" 
else if (acf ≈ε4 acb) then verdict += "the relation in bidirectional-predictive" 
else if (acb >ε5 acf) then verdict += "the relation is backward-predictive" 
else verdict += "the relation is forward-predictive" 
 
return verdict. 

Algorithm 2. The 1DIMERS method 

We use the ε subscripts in the comparison operators to allow the domain expert to 
ignore small differences.  We define a >ε b as a > b + ε and a ≈ε b as |a - b| ≤ ε. The value 
of ε, a non-negative number, is determined by a domain expert. If the results for different 
window values are about the same, we suggest using the smallest window size. 

4. Experimental Results 

This section provides the results of experiments with the TIMERS and 1DIMERS 
methods. There is a clear temporal element in the datasets used in the experiments. The 
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results confirm that regression and classification both give consistent results. In all 
experiments we use training accuracy values. 

Even though 1DIMERS is more general and includes TIMERS, in some cases its 
additional analysis methods may not be applicable or needed. As shown in the 
experiments below, this includes cases where the semantics of the data do not allow a 
sliding position flattening (robot failure data in section 4.1), and hence 1DIMERS is not 
applicable. Another example is in strictly temporal datasets where there is a strong causal 
relationship (artificial robot data 4.2.1), where 1DIMERS's new flattening method would 
not produce any better results than TIMERS. 

4.1 Classifying Robot Failures 

In this section we attend to the problem of failure detection in a robot that grabs, moves 
and puts down objects. Upon encountering a failure, the force and torque values in the x, 
y, and z axis (a total of 6 values) are recorded 15 times at regular intervals. The whole 
process takes 315 ms. The results are then used to classify the type of error that occurred. 
In [18], five strategies have were to create decision rules for solving the problem. The first 
one uses the 6 sensor values as they are, while in others these values are processed first, 
and then used in the decision making process. The 5th strategy combines all the data 
available to other strategies.  The observations have been divided into 5 learning problem 
datasets. LP1 (failure in approach to grasp), LP2 (failure in transfer), LP3 (failure in 
positioning a part after a transfer), LP4 (failures in approach to ungrasp), and LP5 (failure 
in motion with part). Here we observed the force and torque values after an error had 
already occurred. This kind of data must be processed by the standard TIMERS method, 
as it does not make sense to place the decision attribute (occurrence of failure) within the 
observed records. Thus a sliding position flattening is impossible. 

To obtain the results in Table 2, we used TIMERS to merge every 15 consecutive 
records into a single one, and used C4.5 to create decision trees. We tried both the forward 
and the backward directions of time. C4.5 was invoked with default parameters, with the 
exception of the values marked with a *, where the -g (use gain) option was used to 
generate the decision tree. In these cases the values obtained by default arguments appear 
in parenthesis. The window size was fixed at 15. The five strategies covered in [18] are 
presented as S1 to S5. The best value for each learning problem among the 5 strategies is 
presented in bold. 
 

Problem S1 S2 S3 S4 S5 TIMERS (forward) TIMERS (backward) 
LP1 78% 80% 96% 85% 89% 97.7% 97.7% 
LP2 45% 57% 51% 68% 64% 95.7% 95.7% 
LP3 49% 75% 87% 85% 83% 85.1%*  (48.0) 97.9% 
LP4 65% 60% 95% 77% 83% 100%*   (94.9) 100%*  (99.1) 
LP5 69% 63% 72% 49% 77% 90.9%*  (89.0) 90.9%*  (82.3) 

Table 2.  Accuracy values for the robot learning problem 

We see that TIMERS gives either better or nearly the same accuracy values as the best 
of the 5 strategies in [18]. It is also more consistent compared to the other 5 strategies in 
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terms of the quality of results. While TIMERS and S1 both use the original values of force 
and torque, TIMERS performs considerably better without requiring the user to come up 
with ways to process data.  This is a desirable quality because it frees the user from having 
to guess which processing method should be used in any particular case. 

4.2. Evaluation of Regression on Temporal data 

In this subsection we compare the effectiveness of our TIMERS and 1DIMERS 
methods using two different rule discovery approaches, that of C4.5 and CART. We see 
that the results are consistent in both cases. The data under investigation is temporal, 
hence using TIMERS with its temporal terminology is more appropriate. We also provide 
the results of 1DIMERS' sliding position flattening, and compare the results with those of 
TIMERS. 

We will use two temporal datasets. The first one is from an artificial life program 
called URAL [21], and involves an artificial robot moving through a two-dimensional 
board. It can move to left, right, up and down. The goal is for us to discover the effects of 
moving, on the robot's position, expressed by a x and y pair.  The board is 8 × 8 and there 
are 1000 observed records. This data comes from a controlled environment with no 
exceptions, and hence the rules are easy to learn. We consider the results of this test as a 
form of "sanity check" and have been using them as such in our papers. The second 
dataset is from a weather station in Louisiana. It includes 342 records of air temperature, 
the soil temperature, humidity, wind speed and direction and solar radiation, gathered 
hourly. 

In the following tables, the values under "classification" represent the percentage of 
correct classifications done on training data (training accuracy) while the values for 
"regression" represent the error (mean square error). So higher values for classification are 
better, while lower values for regression are desired. We did not change the presentation 
to stay closer to the actual output of the programs we use. 

4.2.1 The Artificial Robot 
Each record in this dataset contains a x and y position value, the direction of movement 

at the time, and also a binary variable indicating the presence or absence of food. We set 
the decision attribute to be the current value of x, and the other three attributes are set as 
the condition attributes. There is no relationship between the current value of x, and the 
current values of y, direction of the movement, or the presence of food, so we predict that 
an instantaneous test (no flattening, or setting the window size to 1) will give poor results. 
Intuitively we know that the current value of x depends on the previous value of x, and the 
previous direction of movement. This temporal relationship makes us consider the 
relationship as a causal one. The acausal hypothesis says that you can tell where you were 
before if you know where you are now. This hypothesis is clearly wrong, as we could 
have ended at the current position from a different number of previous positions. Hence 
we do not expect to get good results with our acausality test. Results of using normal 
flattening are shown in Table 3, where the "Classification" column indicates the 
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percentage of correct classifications, while the "Regression" column (applicable only to 
CART) shows the mean square error. 

 

CART C4.5 Window Normal 
Flattening Classification  Regression Classification 

1 N/A 24.6% 1.687 46.0% 
Forward 100% 0 100% 2 

  Backward 71.7% 0.469 70.6 
Forward 100% 0 100% 3 

 Backward 74.1% 0.435 71.7% 
Forward 100% 0 100% 4 
Backward 76.2% 0.408 72.8% 
Forward 100% 0 100% 5 
Backward 79% 0.378 74.5% 

Table 3. CART and C4.5's results with the robot data 

As shown in Table 3, CART and C4.5 behave similarly when provided with the same 
data. After the data have been flattened, the difference in results between the two 
programs diminishes significantly. The conclusion is the same in both cases: value of x is 
in a causal relation with other attributes, because a causality test provides better results 
than either the instantaneous or acausal tests. More specifically, the previous x and 
direction of movement causally determine the current value of x. This trend (100% 
accuracy for the causal test) is continued with window sizes higher than 5.  

Using the sliding position flattening gives the results shown in Table 4, which are 
consistent with our expectations. With any position bigger than 1, the previous record, 
containing the relevant information for accurate prediction of current x value, is included 
in the flattened data. C4.5 discovers the correct temporal relation between the current 
value of x and the previous x and movement direction, and results are 100% accuracy with 
sliding positions of 2 or more.  

In Tables 3 and 4 we see that there are slight differences between the results obtained 
with normal flattening in the acausal mode on one hand, and with sliding position 
flattening when the position is one, on the other hand. As shown in Table 1, the same 
information is provided to C4.5 in both cases, so one may expect the same results. 
However, the order of the attributes in the flattened records is different. This different 
ordering is evident in Table 1, and causes the results to vary. 
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Window Position Accuracy 
2 1 70.6% 
2 2 100%   
3 1 71.5% 
3 2 100% 
3 3 100% 
4 1 72.7% 
4 2 100% 
4 3 100% 
4 4 100% 
5 1 75.1% 
5 2 100% 
5 3 100% 
5 4 100% 
5 5 100% 

Table 4.  The results of using the sliding position flattening window to predict the value of x 

4.2.2 The weather data 
The subject of experiments in this subsection is a real-world dataset from weather 

observations in Louisiana [23], and hence interpreting the dependencies and relationships 
is harder. The main aim, however, is to compare CART and C4.5's results so as to 
evaluate TIMERS' consistency in giving a verdict based on the quality of the rules. We 
have set the soil temperature to be the decision attribute. The results obtained with normal 
flattening are shown in Table 5. 

 

CART C4.5 Window Normal 
Flattening Classification  Regression Classification 

1 N/A 47.8% 1.375 27.7% 
Forward 58.5% 441.48 82.78% 2 
Backward 60.5% 441.47 75.1% 
Forward 78.0% 0.41 86.8% 3 
Backward 79.5% 0.47 87.1% 
Forward 80.6% 0.37 84.4% 4 
Backward 80.3% 0.45 84.7% 
Forward 64.0% 3.05 86.7% 5 
Backward 63.4% 470.65 82.9% 

Table 5. CART and C4.5's results with Louisiana weather data. 

The relationship between the soil temperature and other variables is not instantaneous, 
as observed by relatively poor results with a window of 1 (instantaneous test). The 
accuracy goes up after flattening, implying that there is a temporal relationship at work 
(the current value of the soil temperature has a close relationship with the previous values 
of the soil temperature, among others). TIMERS allows the user to use his domain 
knowledge when labelling a relationship, especially when the results are similar. In this 
case we decide to declare the relationship as acausal, because the accuracy values in the 



 

 .

two directions of time are not much different. With different time window values, CART 
displayed more variation than C4.5, but the user is still able to make a decision as to the 
acausal nature of the relationship. 

The results of trying the same data with 1DIMERS' sliding position flattening, as 
implemented with TimeSleuth are shown in Table 6. 

 

Window Position Accuracy 
2 1 75.1% 

2 2 82.7%   
3 1 85.3% 
3 2 82.4% 
3 3 86.8% 
4 1 85.3% 
4 2 85.9% 
4 3 83.2% 
4 4 84.4% 
5 1 85.0% 
5 2 87.0% 
5 3 85.0% 
5 4 83.8% 
5 5 86.7% 

Table 6. Results of Sliding position flattening on the weather data. 

All values in Table 6 are similar. 1DIMERS gives the verdict of "bidirectional 
predictive" for these results, which is in contrast to TIMERS' verdict of "acausal." 
TIMERS would lump both bidirectional and backward predictive verdicts under the 
verdict of acausal. TIMERS has less resolution in its verdicts, but given the temporal 
nature of the data, we would choose TIMERS' temporal verdict. 

5. Spatial Data 

For the experiments described in this section, we used data generated while drilling an 
oil well [22]. It includes observations about the characteristics of the rock being pierced, 
including the porosity of the rock (its capacity to hold oil) and different resistance values. 
The records were registered every 0.5 metres, between the depths of 7400 and 8907.5 
metres. The decision attribute was set to be the porosity. TIMERS and 1DIMERS are both 
tried on this dataset. 
To produce results with C4.5, we discretised the value of the porosity to 20 different 
values. In this case, CART was more effective with regression than classification. 
Classification took a much longer time to finish, and was done mainly for comparison 
with C4.5. Table 7 shows the results of the normal flattening methods. 
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CART C4.5 Window Normal 
Flattening Classification  Regression Classification 

1 N/A 35.9% 0.010 42.0% 
Forward 40.4% 0.010 45.3% 2 
Backward 40.1% 0.009 44.0% 
Forward 38.0% 0.009 41.0% 3 
Backward 38.4% 0.009 42.0% 
Forward 37.5 0.009 42.8% 4 
Backward 31.5% 0.009 41.4% 
Forward 36.9% 0.009 39.9% 5 
Backward 29.5% 0.009 39.3% 

Table 7. CART and C4.5's results on drilling-sample data. TIMERS method 

We get very similar results with the previous and next samples (backward and 
forward). TIMERS declares the relationship between the porosity and the condition 
variables to be instantaneous because, the instantaneous test gives about the same results 
as the temporal tests, and TIMERS gives precedence to being instantaneous.  Hence the 
porosity at each point depends on the current values of the other variables at the same 
point. This result matched our expectations, because many of the fields in the data, 
including the resistance values, are related to porosity. 
We also applied 1DIMERS, as implemented in TimeSleuth, to this data. The results are 
given in Table 8. 

 

Window Position Accuracy 
2 1 44.0% 
2 2 45.3% 
3 1 42.2% 
3 2 49.0% 
3 3 41.0% 
4 1 43.1% 
4 2 47.6% 
4 3 48.2% 
4 4 42.8% 
5 1 38.9% 
5 2 46.9% 
5 3 46.4% 
5 4 46.8% 
5 5 39.9% 

Table 8. C4.5's results with the 1DIMERS method. 

According to the results in Table 8, and assuming that a 49.0% result is sufficiently 
better than 44.0%, the relationship among the porosity and the other variables is best 
described as linearly-extended, with a window size of 3 and a sliding position of 2. In 
other words, to predict the porosity at a given depth, the two neighbouring values, half a 
metre above and below, should be used.  
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Throughout Table 8 we get better results with a window position bigger than 1 and 
smaller than the window size, implying a definite neighbourhood relationship between 
porosity and the other attributes. 

6. Concluding Remarks 

We introduced 1DIMERS as a conceptual evolution of TIMERS for application on any 
one dimensional data, and gave the example of a dataset containing samples taken at 
regular intervals from an oil well. The similarities between a spatial line and temporal line 
made this generalisation intuitive. We also demonstrated that this method can be used 
with different underlying rule discoverers, and provide consistent results. CART was 
employed as an alternative to C4.5, and its ability to generate regression trees allowed us 
to work with datasets that C4.5 could not handle efficiently. TIMERS/1DIMERS can be 
implemented both at the rule level and at the tree level [10]. TimeSleuth is an example of 
a software package that implements the TIMERS and 1DIMERS methods at the rule level. 

TimeSleuth, the program that partially implements TIMERS/1DIMERS, can be freely 
downloaded from http://www.cs.uregina.ca/~karimi/downloads.html. Its user interface 
employs a temporal/causal terminology. 
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