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Abstract. We present the Temporal Investigation Method for Enregistered Record 

Sequences II (TIMERS II), which can be used to classify the relationship between a 

decision attribute and a number of condition attributes as instantaneous, causal, or acausal. 

In this paper we consider it possible to refer to both previous and next values of attributes 

in temporal rules, and thus enhance the definition of acausality. We also present a new 

algorithm for distinguishing between causality and acausality. 

1. Introduction 

In this paper we present the Temporal Investigation Method for Enregistered Record 

Sequences II (TIMERS II), which can be used to classify the relationship between a 

decision attribute and a number of condition attributes as instantaneous, causal, or acausal.  

Instantaneous rules are normal decision rules. An example rule is: if {(Outlookt = 

sunny) AND (Temperaturet > 20)} then (Playt = yes), where t indicates the time step of 

observing the attribute’s value. For causality and acausality, the results are temporal 

decision rules. For the causal case, the decision attribute's value is causally determined by 

the condition attributes, whose values all appear in the past relative to the decision 

attribute.  An example is: If {(outlookt-1 = sunny) then (outlookt = sunny). The index t-1 

indicates that the attribute’s value is seen in the previous time step. 

For an acausal relationship, values at time steps bigger than t are used in the process of 

predicting the decision attribute at time t. In TIMERS II it is also possible for some 

condition attributes to have happened in the past. An example acausal rule is: if {(outlookt-

1 = overcast) AND (outlookt+1 = rainy) then (outlookt = rainy). In an acausal relation, the 

decision attribute's value is not caused by the condition attributes, but just happens to be 

seen together over time. In this case there may have been hidden common causes that 

affected all the attributes in the same rule. The same method can be used for linear spatial 

data, where “back” and “forward” can be used to indicate the relative position of an 

attribute’s observation. 

The formal definitions of instantaneous and causal sets of rules are given in [2]. In 

TIMERS II a set of rules is acasual if the current value of the decision attribute relies on 

the future value of at least one condition attribute [3]. 

The rest of this paper is organised as follows. Section 2 introduces the TIMERS II 

algorithm. Section 3 presents a number of experimental results obtained from TIMERS II. 

Section 4 concludes the paper. 



  

2. The TIMERS II Algorithm 

We consider there to be an order of conceptual simplicity among the three types of the 

relations, with instantaneous being the simplest type of relationship, followed by 

acausality, and then causality being the most complex. Hence, instantaneous <simplicity 

acausal <simplicity causal. The intuition behind this ordering is that as we move from 

instantaneous to acausal and then to causal, more claims are being made about the 

relationship. As a principle, we try to explain a relationship with the simplest possible 

type. As we will see in Section 3, this ordering is used to choose a winning relations type 

when the results of the three tests are close. 

Temporalisation was introduced in [2]. TIMERS II introduces the sliding position 

temporalisation as explained in [3]. The temporalisation operator Temporalise(w, pos, D, 

d) takes as input a window size w, the position of the decision attribute within the window 

pos, the input records D, and the decision attribute d, and outputs temporalised records. 

The TIMERS II algorithm is shown in Figure 1. 
Input: A sequence of sequentially ordered data records D, minimum and maximum temporalisation window 

sizes α and β, where 0 < α ≤ β, a minimum accuracy threshold acth,  a decision attribute d, and a confidence 

level cl.  The attribute d can be set to any of the observable attributes in the system, or the algorithm can be 

tried on all attributes in turn. Preference determines whether the user prefers higher accuracy or a simpler 
method.  

Output: A set of accuracy values and a verdict as to the nature of the relationship among the decision attribute 
and the condition attributes. It could be spontaneous, causal, or acausal.  

RuleGenerator() is a function that receives input records, generates decision trees, rules, or any other 

representation for predicting the decision attribute, and returns the training or predictive accuracy, as well as 
the size of the generated rules. 

 

TIMERS II(D, α , β, Acth, d, cl, preference) { 

   aci = RuleGenerator(D, d);  // instantaneous accuracy;  window size = 1 

   for  (win = α  to β) 
           for (pos = 1 to win) 

                (acw,pos , ruleSizew,pos) = RuleGenerator(Temporalise(win, pos, D, d), d)  

   acc = max(acα,α, …, acβ,β)  // best causal result 

   aca = max(acα,pos1, …, acβ,pos2),  ∀ acx,pos, 1 ≤ pos < x  // best acausal result 

   if (max(aci, acc, aca) < acth) then stop.     // Maybe there is not enough related information? 
   Verdict = "for attribute " + d + ", " 

   Relation = RelationType(cl, (aci, ruleSizei), (aca, ruleSizea), (acc, ruleSizec), preference) 

   Case relation of  
          INSTANTANEOUS: verdict += "the relation is instantaneous" 

          ACAUSAL: verdict += "the relation is acausal"  // an element from the future is present 
          CAUSAL: verdict += "the relation is causal" // all condition attributes are from the past 

   end case 
   return verdict. 
} 

Fig. 1. TIMERS II algorithm for discovering the nature of a relationship. 

 

TIMERS II has been implemented in an application programme called TimeSleuth [1].  

TIMERS II first performs the instantaneous test. Since it may not be obvious which 

window size is most appropriate for a particular dataset, TIMERS II tries a range of 



  

window sizes. The resulting temporalised data are fed to a rule generator which comes up 

with decision rules, and returns the accuracy and also the complexity of the rules. These 

measures are used to decide on a relation type. For an analysis of the time and space 

requirements of TIMERS II, see [3].  

We use the accuracy and complexity of the rules obtained from each method to choose 

the best relation type that applies to the data. Normally the method with the highest 

accuracy value would be selected. However, it may happen that the accuracy values are 

close to each other.  In such cases we choose the simpler relationship because the gains 

from choosing another relationship type may not be worth the extra complexity. Users can 

employ their discretion in making this decision. However, TIMERS II includes a 

statistical method. The RelationType() routine uses accuracy intervals to make a judgment 

about the type of the relationship. Using the confidence level provided by the user in the 

cl parameter, and assuming normal distribution, it constructs a confidence interval for the 

accuracy [4]. Then it checks to see if the corresponding intervals overlap. If they do, the 

method with the simpler type of relationship will be chosen provided it has simpler rules. 

The intuition is that even if the simpler method has resulted in less accuracy, it could have 

potentially produced better or the same results. After selecting a winner between the first 

two methods, the winning relation type is tested against the third relation type using 

similar comparison of intervals, to determine the final winner.  

As an example, suppose with a confidence level of 90%, we have: the instantaneous 

accuracy aci = 32.5%, intervalaci= [31%, 34%], the acausal accuracy aca = 35%, intervalaca 

= [33%, 37%], and the causal accuracy acc = 37%, intervalacc = [35%, 39%]. For 

simplicity of the example we assume all methods have the same size of rules. Because the 

confidence intervals of the instantaneous method and the acausal methods intersect, 

instantaneous is chosen because it is considered simpler. Since the intervals of the 

instantaneous and causal methods do not overlap, the causal method is chosen as the final 

verdict because of its higher accuracy value.  This example also shows the special case 

when the every two intervals are overlapping. In this case, starting with the first two or the 

last two methods give different results. In the first case, as shown above, we choose the 

method with the highest accuracy. But when starting from right to left (higher accuracy 

value to lower values) we choose the simplest method. We leave the decision about which 

direction to follow to the user. In the TimeSleuth programme the user can choose between 

"Prefer simpler method" (right to left) and "Prefer higher accuracy" (left to right) options. 

See [3] for more details.  

Here is how the algorithm to choose a method works. To determine which 

method/relation type to choose, we sort the accuracy values in either ascending order 

(preferring higher accuracy), or descending order (preferring simpler method). This 

different ordering simplifies the algorithm, because we do not need to worry about the 

direction after this point. Starting with the two methods with the lowest (or highest) 

accuracy values, we test to see if there is an overlap among their confidence intervals. If 

so, then we choose the simpler method. The choice of the simpler method depends on 

both the conceptual complexity of the relation as defined above, and also the size of the 

rules that are needed to express the relationship. In our method the more space needed for 



  

the rules, the more complex that relationship. We use the number of conjuncts in the rules 

to measure their size, as in the Minimum Description Length (MDL) principle. We make 

the decision as to which method to choose the following way: If a conceptually simpler 

method overlaps with a conceptually more complex method, but at the same time requires 

more space to represent the rules, then priority is given to the more complex rule. In other 

words, for a simpler method to over-ride a more complex method, not only should there 

be an overlap between their accuracy intervals, but the simpler method should result in 

fewer or shorter rules. While our assumed order of complexity is subjective, including the 

size of rules adds an objective element to the complexity measure. If there is no overlap in 

the accuracy intervals, we choose the method with the better accuracy value. A winner is 

thus selected among the first two methods. This winning relation type is then compared 

with the third method to determine the final method. Figure 2 shows how the best method 

is selected. 
Input: A confidence level cl, three accuracy values corresponding to the instantaneous, acausal, and causal 
methods: aci, aca, acc, and their corresponding size of rules: ruleSizei, ruleSizea, ruleSizec, a  preference p for 

higher accuracy vs. a simpler method. 

Output: A verdict as to the best relationship type. 
//info[].method contains one of INSTANTANEOUS, CAUSAL, or ACSUAL. info[]. Accuracy is the best 

//accuracy value. info[].interval contains the interval of the accuracy value, computed using a confidence value 
 

Function RelationType(cl, (aci, ruleSizei), (aca, ruleSizea), (acc, ruleSizec), p) { 

    // initialise the info[] structure 
    forEach (method = INSTANTANEOUS, ACAUSAL, CAUSAL) 

        info[method] = (method , accuracymethod,  ruleSizemethod, Intervalmethod =  
                                                                                                        ComputeAccuracyInterval(accuracymethod)) 

    // if preference is given to higher accuracy, then start the search from lower accuracy values 

    if (p == HIGHER_ACCURACY)  
       sort_Ascending(info[]); // sort in ascending order of accuracy. 

    else   // SIMPLER_METHOD 
       sort_Descending(info[]) 

       winner = 1 

       for (count = 2 to 3) 
          if  (overlap(info[winner].interval, info[count].interval)) {// if overlap, then choose the simpler method 

            if (info[count].method <simplicity info[winner].method and 

                info[count].ruleSize ≤ info[winner].ruleSize) then 

               winner = count 

        }  
        else { // if no overlap, choose the method with higher accuracy 

            if (info[count].accuracy  > info[winner].accuracy) then 
                winner = count 

        } 

    return info[winner].method   //one of  INSTANTANEOUS, ACAUSAL, or CAUSAL 
 } 

Fig. 2.  Selecting the best relationship. 

 

If needed, this algorithm can also select the best window size based on a number of 

accuracy values obtained in either the acausal or casual case. The order of simplicity is 

then determined by the window size, with bigger window sizes considered less simple. In 



  

the TIMERS II algorithm in Figure 1, we use the use the window size that gives the 

maximum accuracy. 

3. Experimental Results 

We report on experiments using two temporal datasets. The first one is generated by an 

artificial life programme called URAL, and involves an artificial robot moving left, right, 

up and down on an 8 × 8 board. The goal is for us to discover the effects of moving the 

robot. The position is expressed by a x and y pair. We used 2500 records for training, and 

500 for testing the rules (to compute the predictive accuracy). This data comes from a 

controlled environment with no exceptions.  

Each record in the robot dataset contains x and y position values at any given time and 

the direction of movement at that time. We set the decision attribute to be the current 

value of x, and the other three attributes are set as the condition attributes. There is no 

relationship between the current value of x on one hand, and the current values of y, 

direction of the movement, or the presence of food on the other hand. So we predict that 

an instantaneous test (window size of 1) will give poor results. From our understanding of 

the domain we know that the current value of x depends on the previous value of x, and 

the previous direction of movement. We expect the method to classify the relationship as 

a causal one. The acausal hypothesis says that you can tell where you were before if you 

know where you are now, and which direction you are will be going next. This hypothesis 

is clearly wrong, as we could have ended at the current position from a different number 

of previous positions. Hence we do not expect to get good results with our acausality test. 

The results are shown in Table 1. Even though an acausal method may have been used, 

the output rules may not have any references to attributes that appear after the decision 

attribute. In this case the rules are considered to be causal, seen in under “Actual rules.”  

Considering the result with a window size of 2, we declare the relation to be causal. 

With any position bigger than 1, the previous record which contains the relevant 

information for accurate prediction of current x value, is included in the temporalised data. 

The method discovers the correct temporal relation between the current value of x and the 

previous x and movement direction, with results having 100% accuracy with sliding 

positions of 2 or more. In other words, even with an acausal test, the rules are all causal, 

because they only contain attributes from the previous time step. 

The second series of experiments concerns a real-world dataset from weather 

observations in Louisiana [5], and hence interpreting the dependencies and relationships is 

harder. It includes 343 training records, each containing the air temperature, the soil 

temperature, humidity, wind speed and direction, and solar radiation, gathered hourly. 38 

other records were used for testing the rules and estimating predictive accuracy. We set 

the soil temperature to be the decision attribute. The results are shown in Table 1. 

The relationship is not instantaneous, as observed by relatively poor results with a 

window size of 1 (instantaneous test). The accuracy goes up after temporalisation, 

implying that there is a temporal relationship at work. This relation is not causal, and the 

current value of the soil temperature just happens to change relative to its past values. 



  

Since the accuracy values in causal and acausal tests are not much different, TimeSleuth 

declares the relationship between the soil temperature and other attributes to be acausal.  
 Robot Data Weather Data 

Win Position Type  
of test 

Training 
Accuracy 

Predictive 
Accuracy 

Actual  
Rules 

Training  
Accuracy 

Predictive 
Accuracy 

Actual  
Rules 

1 1 Instant 19.7% 20.4% Instant 27.7% 23.7% Instant 

2 1 Acausal 56.2 55.7% Acausal 75.1% 59.5% Acausal 

2 2 Causal 100%   100% Causal 82.7%   67.6% Causal 

3 1 Acausal 57.6% 55.6% Acausal 85.3% 75.0% Acausal 

3 2 Acausal 100% 100% Causal 82.4% 72.7% Acausal 

3 3 Causal 100% 100% Causal 86.8% 77.8% Causal 

4 1 Acausal 58.4% 58.1% Acausal 85.3% 74.3% Acausal 

4 2 Acausal 100% 100% Causal 85.9% 74.3% Acausal 

4 3 Acausal 100% 100% Causal 83.2% 74.3% Acausal 

4 4 Causal 100% 100% Causal 84.4% 71.4% Causal 

Table 1. TIMERS II's accuracy result with the robot and weather data 

4. Concluding Remarks 

TIMERS II provides a method to discover and distinguish between instantaneous, 

causal, and acausal relationships between a decision attribute and a set of condition 

attributes. Our method is based on the passage of time between causes and effects.  We 

generalised the ability to refer to attribute values from other time steps so that a rule can 

refer to condition attribute’ values that appear before and after the decision attribute. This 

ability results in an enhancement to the definition of an acausal relationship. We also 

provided an algorithmic method of distinguished between instantaneous, causal, and 

acausal relations.  

One can apply the same temporal considerations to associations, so the values of a 

number of attributes from different time steps can be associated together. However, in an 

association we do not have a distinguished decision attribute, observed at a reference time 

(the current time). So defining the future and the past may not be straightforward. 

TimeSleuth is available from http://www.cs.uregina.ca/~karimi/downloads.html. 
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